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Prologue

The Haverford Educational RISC Architecture (HERA) provides a foundation for the multi-
course project that unifies Haverford’s upper-level computer science curriculum. The HERA
instruction set is powerful enough to illustrate assembly-language programming techniques and
serve as a target for compilers, yet simple enough to be implemented as a student project and
extended in hardware/software co-design projects to provide operating system support. Thus,
across the lab projects of four classes, students produce a system in which machine-languge code
they write or generate with a compiler can be executed on a microprocessor they have designed,
and on which I/O to an ASCII terminal can be performed via device drivers they have written
themselves. The Haverford curriculum couples these labs with lectures and smaller assignments
that contrast HERA with real-world systems. See [Won06] for more details of the educational
uses of HERA.

The HERA-C development system lets students execute HERA assembly language programs
before their own system is operational. HERA-C is a set of C/C++ macros that lets students
compile, execute, and debug HERA programs with a standard C++ development environment,
minimizing distractions from new tools. See www.cs.haverford.edu/software/HERA for more
information about HERA-C, the HERA assembler Hassem, and other supporting tools.

The HERA system originated with an attempt to adapt Andrew Appel’s “Jouette” [App98] for
use in a Computer Hardware course based on [Man88]. The current system owes much to the
helpful criticism and patience of students who endured early versions. Todd Miller (Haverford
College class of 2001) also contributed significantly to the early macros that became HERA-C.
My thanks to all of you!

Organization of this document:

Part I focuses primarily on the hardware features provided by a HERA CPU and a standard
assembler, without going into detail on the usage or reason for each feature. It is intended to
serve as a primary reference for anyone building or extending the hardware of a HERA CPU, or
for experienced assembly-language programmers wishing to pick up HERA.

Part II discusses typical usages of HERA hardware instructions and assembler features. It is
intended to serve as a primary reference for those learning assembly-language programming for
the first time, or for experienced assembly-language programmers who need a reference for the
conventions of HERA (using the notation of the HERA-C system).
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Part I

Definitions





Chapter 1

Architecture Overview

1.1 User-Addressable Registers

The HERA processor has sixteen 16-bit user-addressable registers, R0...R15, which can be used as
operands or targets for most instructions (e.g., ADD or LOAD). Programs primarily use R1...R10 to
hold information they are processing, much as high-level language programs use variables. In con-
trast, R0 and R11-R15 have specific definitions or conventional uses: The zero register (R0) always
has the value 0 (i.e., the processor ignores any value directed into it); the stack pointer (R15, usu-
ally referred to as SP ) and frame pointer (R14, usually referred to as FP ) are used to maintain
stack frames that (along with R1....R10) hold the values of local variables; the other registers
above R10 are, by convention, used by programmers and assemblers for specific purposes such as
function calls, branches, and in other short-term roles, as detailed in Chapters 3 and 7.

1.2 Program Counter and Flags Register

The processor also has a 16-bit program counter (PC) and a set of status/control flags (some-
times referred to as condition bits). The flags are: sign (s, or F0), which is set to true when a
negative value is produced by most operations; zero (z, or F1), which is set to true when zero is
produced; overflow (v, or F2), which indicates overflow from a signed arithmetic operation; and
carry (c, or F3), which indicates overflow from an unsigned operation.

These flags control the behavior of conditional branch instructions; the value of the carry flag
may also be used in subsequent arithmetic operations, to support multiple-precision calculations.
There is an additional 5th flag (F4), known as “carry-block”, not found on most processors. When
carry-block is true, the carry is not used during arithmetic operations. This allows simpler code
for single-precision operations and some shift operations. The carry-block flag can be saved,
restored, or explicitly modified, but is not affected by other operations.

1.3 Memory System and Address Spaces

HERA can address 216 16-bit words of memory, using the LOAD and STORE instructions. A HERA
CPU typically uses separate memory systems, each with its own address and data buses, for
instructions and data (as with the original “Harvard architecture”, see Page K-4 of [HP07]).
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Chapter 2

Instruction Set

The HERA instruction set is comprised entirely of single-word instructions, each identified by a
pattern of bits (in machine language) and a standard abbreviation or short word (in assembly
language). In the descriptions below, subscripts are used to identify specific bits, e.g. b15:12 refers
to bits 15 through 12 inclusive (the first four of the sixteen bits of the instruction). Except for
the memory operations LOAD and STORE, HERA instructions change only registers and flags.
Most instructions make use of data from a register, with a few exceptions such as SETLO, INC,
FSET4, etc., which use immediate operands, i.e., a value that is contained within the bits of the
instruction word.

2.1 SETLO and SETHI (b15:13=111)

SETLO, and a SETLO/SETHI sequence, are used to place a specific value in a register:

b15:12 Mnemonic Meaning Notes
1110 SETLO(d, v) Rd← v set Rd to signed quantity v

1111 SETHI(d, v) (Rd)15:8← v set high 8 bits of Rd

SETLO sets Rd to the sign-extended value v, and can thus, by itself, establish a numeric value
between -128 and 127. SETHI changes the high 8 bits of Rd to v, leaving the lower 8 intact, so a
SETLO/SETHI sequence can be used to establish any 16-bit value.

SETLO and SETHI do not affect any flags; their actions are not affected by any flag values.
The binary instructions for SETLO and SETHI identify the instruction (b15:12) and destination

register (b11:8), and include all 8 bits of v (b7:0):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 l/h d v

2.2 Arithmetic and Bit-wise Instructions (b
15:13

=110, 101, or 100)

HERA provides the following three-address operations for arithmetic and bit manipulation:

b15:12 Mnemonic Meaning Notes
1000 AND(d, a,b) Rd(i)←Ra(i)∧Rb(i) bit-wise logical and
1001 OR(d, a,b) Rd(i)←Ra(i)∨Rb(i) bit-wise logical or

1010 ADD(d, a,b) Rd←Ra+Rb+ (c∧F4
′) addition; use carry unless blocked

1011 SUB(d, a,b) Rd←Ra−Rb− (c′∧F4
′) subtraction; use carry unless blocked

1100 MUL(d, a,b) Rd← (Ra ∗Rb)15:0 [Or31:16] multiplication (details below)

1101 XOR(d, a,b) Rd←Ra⊕Rb bit-wise exclusive or

13



These operations all set s, to b15 of the result, and set z , to true if the result of the operation
was zero, otherwise to false. The three bit-wise operations do not affect c or v , but ADD, SUB, and
MUL do. The latter set v , to true if there was a signed-arithemetic overflow (i.e., if the signed
interpretation of bits 15-0 of their result is not equal to the sum/difference/product (respectively)
of the signed interpretations of the operands), or to false if there was no overflow. ADD and MUL

set c, to true if there was a carry (if the sum/product of the unsigned interpretation of the

operands is greater than or equal to 216), and to false otherwise. SUB sets c to true if there was
not a need to borrow from the 216’s place when subtracting (i.e., if the unsigned interpretation of
Ra is greater than that of Rb), and to false if there was a need to borrow.

The results of the bit-wise operations do not depend on the values of the flags, but the results
of the arithmetic operations do. When carry-block is true, no other flag values matter, and ADD,
SUB, and MUL produce bits 15-0 of the sum, difference, or product of the parameters.

When carry-block is false, the arithmetic operations can be used for multiple-precision opera-
tions, as they encorporate the value of the carry flag from a presumed prior operation on lower-
sigificance words (see Section 4.2 for details). Specifically, when carry-block is false, ADD and SUB

use the incoming value of c as the incoming carry (for ADD) or not-borrow (for SUB). When carry-
block is false, MUL can produce a variety of different results, depending on the values of all four
other flags. When all are zero, MUL produces produces the low word (bits 15-0) of the product of
Ra and Rb, exactly as it does when carry-block is true. When only s is true, MUL produces the
high word (bits 31-16) of the signed interpretations of Ra and Rb. The behavior for the other
fourteen possible sets of flag values are currently undefined, but may eventually be defined for
multi-word unsigned multiplication, or for results that are useful in multiple-precision work.

Three-address arithmetic and bitwise operations are encoded by the op code, then d, a and b.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op d a b

2.3 Increment and Decrement (b15:12= 0011, b7=1)

The increment and decrement operations are

b15:12 b7:6 Mnemonic Meaning Notes

0011 10 INC(d, δ) Rd←Rd+ δ Increment Rd by δ

0011 11 DEC(d, δ) Rd←Rd− δ Decrement Rd by δ

INC and DEC update flags as ADD and SUB would, but always ignore the incoming carry.

The value of b6 controls whether an increment (b6=0) or decrement (b6=1) is performed:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 d 1 i/d ǫ

Note that the value added or subtracted from Rd is one more than the unsigned quantity
given in bits 5:0 (labeled ǫ above) — there is no increment or decrement by zero. By convention,
assembly language translators require that the programmer express δ, the quantity to be added
or subtracted for INC and DEC. For example, INC(r1,6) produces the machine language instruc-
tion 0x3185, not 0x3186, to add the constant 6 to R1.
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2.4 Shift Instructions (b15:12= 0011, b7:4 vary)

The HERA shift operations are:

b15:12 b7:4 Mnemonic Meaning Notes
0011 0000 LSL(d, b) Rd← shl/rolc (Rb) Logical shift left, possibly with carry
0011 0001 LSR(d, b) Rd← shr/rorc (Rb) Logical shift right, possibly with carry
0011 0010 LSL8(d, b) Rd← shl8 (Rb) Logical shift left 8 bits
0011 0011 LSR8(d, b) Rd← shr8 (Rb) Logical shift right 8 bits
0011 0100 ASL(d, b) Rd← asl/aslc (Rb) Arithmetic shift left, possibly with carry
0011 0101 ASR(d, b) Rd← asr (Rb) Arithmetic shift right

All shift operations modify s and z as appropriate for the value produced. For one-bit shifts,
c becomes the bit shifted out; for ASL, v receives the value it would have after ADD(d, b, b); other-
wise the flag values are not changed by shift instructions.

LSL, LSR, and ASL shift in the value (c ∧ F4
′). Thus, when carry-block is false, the logical shift

operations correspond to a rotate with carry. ASR ignores the incoming carry, always producing a
result that is half of the (signed) value. The eight-bit shift operations shift in zeros, regardless of
the carry block flag.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 d 0 shift-op b

2.5 Direct Manipulation of Flags (b15:12= 0011, b7:5= 011)

Flag values are automatically set by some operations, but they can also be manipulated directly
with the instructions below.

2.5.1 Saving and Restoring Flags

Flags can be collectively saved to, or loaded from, a register.

b15:12 b7:4 b3 Mnemonic Meaning Notes
0011 0111 0 SAVEF(d) Rd←F Save flags to Rd

0011 0111 1 RSTRF(d) F←Rd Restore flags from Rd

Note that the flags are saved in bits 4-0 of Rd. Instruction bit b3 controls whether flags are
saved (b3=0) or restored (b3=1):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 d 0 1 1 1 s/r 0 0 0

2.5.2 Setting Flags

Sets of flags can be explicitly turned on (set to true) or off (set to false) with FON or FOFF. It is
also possible to set all flags (or all but carry-block) via FSET5 (or FSET4).

2.5 Direct Manipulation of Flags (b15:12 = 0011, b
7:5

= 011) 15
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b15:12 b11:9 b7:4 Mnemonic Meaning Notes
0011 000 0110 FON(v) F←F ∨ v Set to true any flags for which v is true
0011 100 0110 FOFF(v) F←F ∧ v ′ Set to false any flags for which v is true
0011 010 0110 FSET5(v) F← v Set all flags to have the values of v
0011 110 0110 FSET4(v) F3:0← v Set flags other than carry-block

The binary representations for these instructions combine b8 and b3:0 to represent v :

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 flag-op v4 0 1 1 0 v3 v2 v1 v0

For example, FON(0x15) (i.e., binary 0x3165) sets the carry block (F4, which is 0x10 in the
flag register) and v and s (0x04 and 0x01) to true, but leaves c and z unchanged; FOFF(0x0a)
(binary 0x386A), which clears c and z , leaving F4, v , and s; FSET4(0x5) (binary 0x3C65) sets v
and s to true, and c and z to false (carry-block is unchanged by FSET4 but affected by FSET5).

2.6 Memory Instructions (b15:14= 01)

The LOAD and STORE instructions move data between registers and memory.
b15:13 Mnemonic Meaning Notes
010 LOAD(d, o,b) Rd←M [Rb+ o] Load memory cell into Rd.
011 STORE(d, o,b) M [Rb+ o]←Rd Store value of Rd into memory.

No flag is modified or used during a STORE instruction; LOAD modifies s and z and leaves other
flags unchanged. The binary format for these instructions is

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 l/s o4 d o3 o2 o1 o0 b

where b13 is 0 for a LOAD operation and 1 for a STORE, and data is transferred between Rd and
memory cell Rb + o, where o is a 5-bit unsigned number (0..31) constructed from b12 followed by
b7:4. For example, LOAD(r7, 0x13,r2) (binary 0x5732) loads M [R2+0x13] into R7.

2.7 Control-Flow (b15:14= 00)

Control-flow instructions include conditional branches, unconditional branches (also called
“jump”), and transfers among functions and coroutines. Op codes are also set aside for software
functions associated with interrupt processing, though this behavior is not fully specified.

2.7.1 Branches, including jumps (b15:13= 000)

HERA provides the following branch instructions to vary the program counter’s normal progress
through the instruction addresses (i.e., the usual update PC ← PC + 1). Branch instructions do
not change any flags.

Register-mode branches set PC to Rb, and relative branches set PC to PC + o. Thus, the
unconditional relative branch instruction includes the special cases HALT (when o=0) and NOP

(“no operation”, when o = 1). For a conditional branch, this adjustment only occurs if the stated
flag expression is true; otherwise, the PC changes to the usual PC +1.

16 Instruction Set
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b15:12 b11:8 Mnemonic Meaning
0001/0 0000 BR(b)/BRR(o) Always set PC←Rb (for BR) or PC←PC + o (for BRR)
0001/0 0001 (unused)
0001/0 0010 BL(b)/BLR(o) Branch if signed result <0, i.e., set PC if (s⊕ v)=True
0001/0 0011 BGE(b)/BGER(o) Branch if signed result >0, i.e., (s⊕ v)′

0001/0 0100 BLE(b)/BLER(o) Branch if signed result 60, i.e., ((s⊕ v)∨ z)
0001/0 0101 BG(b)/BGR(o) Branch if signed result >0, i.e., ((s⊕ v)∨ z)′

0001/0 0110 BULE(b)/BULER(o) Branch if unsigned result 60, i.e., (c′∨ z)
0001/0 0111 BUG(b)/BUGR(o) Branch if unsigned result >0, i.e., (c′∨ z)′

0001/0 1000 BZ(b)/BZR(o) Branch if zero, i.e., z, i.e., if equal operands (of SUB/CMP)
0001/0 1001 BNZ(b)/BNZR(o) Branch if not zero, i.e., z ′, i.e., if operands not equal
0001/0 1010 BC(b)/BCR(o) Branch if carry, i.e., c , i.e., if unsigned result >0
0001/0 1011 BNC(b)/BNCR(o) Branch if not carry, i.e., c′, i.e., if unsigned <0
0001/0 1100 BS(b)/BSR(o) Branch if sign, i.e., s, i.e., signed result was negative
0001/0 1101 BNS(b)/BNSR(o) Branch if not sign, i.e., s′

0001/0 1110 BV(b)/BVR(o) Branch if overflow, i.e., v
0001/0 1111 BNV(b)/BNVR(o) Branch if not overflow, i.e., v ′

Branches, both conditional and unconditional, are indicated by b15:13 = 000. For both, b11:8
indicate the condition under which the branch is to be taken, unconditional branch is indicated
by b11:8 = 0; see Section 9-8 of Mano’s “Computer Engineering: Hardware Design” [Man88] for
details of flag usage. Register-mode branches are indicated by an appended “R” in the assembly-
language name, and by b12=1 (vs. b12=0 for relative branches) in machine code.

The format for register-mode branch instructions is

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 cond 0 0 0 0 b

The format for relative branch instructions is

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 cond o

where the 8-bit signed quantity o gives the amount to adjust the PC (-128...127).

2.7.2 Function call and return (b15:9= 0010 000)

HERA provides a single machine-language mechanism to perform both call and return. To ease
debugging, and for historical reasons, CALL and RETURN are expressed with two different op codes,
though they have the same hardware semantics and can be used to implement arbitrary transfer
among co-routines as well as functions.

b15:8 Mnemonic Comments
0010 0000 CALL(a, b) Call function at address Rb, with new stack frame starting at Ra

0010 0001 RETURN(a, b) Return, if return address and caller’s FP are in Rb and Ra

Both of these instructions are achieved via PC←Rb, Rb← PC + 1, FP←Ra, Ra← FP . Nei-
ther changes any flags.

Since the action of these instructions is the same, hardware can ignore b8 of the instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0/1 a b
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The difference between CALL and RETURN is thus one of usage, not implementation. To per-
form a CALL to a function f , Rb should be f ’s starting address, Ra should be the base (minimum)
address for the stack frame to be used for this call to f , and the stack pointer (R15, a.k.a. SP )
should be sufficiently far above Ra to accomodate f ’s initial stack frame. The CALL instruction
itself would then set PC ← start(f) and FP ← frameBase(f), and save the return address in Rb

and the caller’s frame pointer in Ra. The corresponding RETURN would put that return address
back into PC, and the caller’s frame pointer back into FP , as long as calling and called functions
have consistent conventions, for example always using R12 as Ra, and R13 as Rb, and assuming
the values have not been overwritten by the body of the function.

See Chapter 7 for more information about conventions for function calls. The use of the
HERA CALL (or RETURN) instruction for other transfers of control, e.g., for iterators, generators,
or other co-routines, is outside the scope of this document.

2.7.3 Codes Reserved for Interrupt Processing (b15:9= 0010 001)

The precise working of interrupts, and of input and output, involve interplay between hardware
signals and program instructions. The co-design of these mechanisms is specifically left as an
exercise, e.g. for students in Haverford’s CMSC 356: Concurrency and Co-Design in Operating
Systems. However, the names and operation codes below are reserved for specific purposes, and
assemblers and other tools should recognize/support them to the degree possible:

b Mnemonic Comments

0010 0010 0000 i SWI(i) Software interrupt #i

0010 0011 0000 0000 RTI() Return from interrupt

SWI allows software to simulate an interrupt, though of course this “interrupt” is synchonized
with the excecution of the SWI instruction, rather than being triggered by some external event
such as a user typing on a keyboard. RTI returns from an interrupt, whether triggered by SWI or
by a hardware signal.

Other operation codes with b15:12= 0010 (and b11:10=/ 00) are completely unspecified.
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Chapter 3

Assembly-Language Features

Assemblers and other tools for low-level code often recognize a number of statements beyond the
set of instructions provided in hardware. Typically, they provide pseudo-operations that combine
several hardware instructions for convenience; they let programmers enter a program’s data as
well as well as its instructions; they let programmers define and use labels , i.e., symbolic names
for constants, including memory locations; and they let programmers define their macros to
extend the notation used in their programs.

3.1 Pseudo-Operations and the Temporary Register

As with real RISC architectures, the HERA instruction set defines a core of features that can
each serve a variety of purposes, avoiding the need for hardware implementations of some features
found in non-RISC architectures. For example, HERA has no “move” instruction to move a value
from one register to another, as a bit-wise or with R0 will do this job; HERA has no bit-wise not
operation, as an exclusive-or with the constant 0xffff will do this; HERA has no instruction to
test if one register’s value is less than another’s, as a subtraction that discards its numeric result
(by directing it into R0) will do so.

To provide standardization and convenience, a number of these common idioms are normally
pre-defined in assemblers. Thus, an assembler will translate both actual hardware instructions,
turning FSET(0x08) SUB(5,2,3) into 0x3068 0xB523, and the pseudo-operations below, turning
CMP(2,3) into 0x3068 0xB023. (Note that some assemblers may also provide an option to skip
the step of setting the carry before subtraction in the CMP pseudo-operation, if they can ensure
that this shorter definition will only be used when the carry-block is set, but these details are
beyond the scope of this document.)

The stardard HERA pseudo-operations for arithmetic and flag operations are shown below:

Mnemonic Definition Notes
SET(d, v) SETLO(d, v & 0xff); SETHI(d, v≫ 8) Rd← v (set Rd to 16-bit value v)
SETRF(d, v) SET(d, v); FLAGS(d) Rd← v (set Rd and flags for v+0)
MOVE(a,b) OR(a, b,R0) Ra←Rb

CMP(a, b) CON( ); SUB(R0, a, b) Set flags for a− b

NEG(d, b) CON( ); SUB(d, R0, b) Set Rd←−Rb

NOT(d, b) SET(R11, 0xffff); XOR(d,R11, b) Set Rd to the Bit-wise complement of Rb

CON( ) FON(0x08) Turn on the carry flag
COFF( ) FOFF(0x08) Turn off the carry flag
CBON( ) FON(0x10) Turn on the carry-block flag
CCBOFF( ) FOFF(0x18) Turn off the carry and carry-block flags
FLAGS(a) COFF( ); ADD(R0, a, R0) Set flags for Ra

OPCODE(n) n Machine language op n
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Note that R11 is used as a “temporary register” to hold a value during the steps of the NOT

pseudo-operation. Assemblers typically also define Rt as a synonym for R11, to encourage pro-
grammers to use this same temporary register (as long as they do not expect it to retain a value
while a NOT pseudo-operation is performed or during an assembler-generated register-mode
branch to a labelled statement, as discussed below).

The OPCODE pseudo-operation is typically used to translate non-standard extensions of the
HERA instruction set.

3.2 Instruction Labels and Branching Pseudo-Operations

Proper use of branching instructions is among the most tedious and error-prone elements of
direct machine-language programming. When writing a program, the programmer must count the
number of instructions to be skipped in a relative branch, or find the absolute program address to
be reached in a register-mode branch. When editing a program in a way that inserts or removes
instructions, all relative branches across the edit point, and all register-mode branches after that
point, must be updated.

Assemblers ease this burden greatly by letting programmers identify program instructions
with labels, and then refer to those labels in branch instructions. The correct numbers are then
computed as the code is assembled.

The standard HERA pseudo-operations for branching are shown below:

Mnemonic Definition Notes
LABEL(L) (no machine language generated) Define L = next instruction’s address
BR(L) SET(R11, address(L)); BR(R11) Branch to label L, using R11

BRR(L) BRR(distanceTo(L)) Branch (relative) to label L
BG(L), BC(L)... ... (conditional branches use R11)
BGR(L), BCR(L)... ... (conditional relative branches)
NOP( ) BRR(1) Do nothing (“No operation”)
HALT( ) BRR(0) Halt the program
CALL(a, L) SET(R13, address(L)); CALL(Ra, R13) Call a function, using R13 for address

A HERA label is a sequence of letters, numerals, and underscores that does not start with a
numeral (i.e., any legal C++ identifier), and identifies the instruction that follows it.

Note that R11 is once again used as a “temporary register” that holds a value within the steps
of a (register-mode branch) pseudo-operation. Since the registers used in a CALL retain important
values after the execution of the call instruction, the pseudo-op uses R13 rather than R11 to hold
the address; by convention, the first operand of CALL is R12, and assemblers may reject code that
does not follow this convention, or the matching convention of using R12 and R13 as the operands
of all RETURN instructions. See Chapter 7 for details of idiomatic usage of CALL and RETURN.

Some assemblers and other tools may support branches only to labels (rather than specific
addresses or offsets).
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3.3 Data Statements and Data Labels

Programs contain data as well as code. HERA assembly language provides a set of standard data
statements to pre-load integer and string values into data memory, to allocate uninitialized
memory, to name data-memory locations with data labels, and to provide symbolic names for
constant values.

Mnemonic Meaning
CONSTANT(N , v) Define the name N to have the value v

DLABEL(L) Define L = the next data statement’s address
INTEGER(i) Put i in the current data-memory cell
LP_STRING("s") Put length-prefixed string s in data memory
DSKIP(n) Skip n cells of data memory

The CONSTANT statement defines a symbolic name for a value, for use in later data statements
or instructions. Like LABEL and DLABEL, it does not produce any machine language by itself, but
instead guides the assembler in the translation of later parts of the program.

Data labels follow the same naming rules as instruction labels, but are used to label the
memory cells allocated with the following INTEGER, LP_STRING, and DSKIP statements.Strings
must be entered as printable ASCII characters and spaces, with backslash (\) used only for the
sequences \t, \n, \\, \", \xhh, and \uhhhh (for hexidecimal digits h). The escape sequences have
the meanings they would have in C/C++ strings, but note that LP_STRING stores s in data
memory as an integer count of the number of characters followed by the characters, rather than
as a C-style null-terminated sequence.

Note that the HERA-C simulator, HERA assemblers, and other assembly-language tools may
require that all data statements and data labels precede all instructions and instruction labels.
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Chapter 4

Idioms for Operating on Scalar Values
High-level languages typically allow complicated expressions involving both variables and literal
values, and allow assignment of values to variables, for example a := 7*(b+c)+4*d and e := d-c

(for integer variables a-e), or ch>=’A’ and ch<=’Z’ (for a character variable ch). In HERA, as
with most RISC architectures, arithmetic and comparisons are performed on registers, so we
must make registers take on the roles of variables and literal values.

4.1 Single-Precision Values, Arithmetic, and Comparisons
When every value can fit in a 16-bit register, we place each literal value or variable in a single
register; this is known as single-precision arithmetic, since we use a single register for each value.
In single-precision arithmetic, each addition, subtraction, or multiplication can be performed with
a single HERA operation, without requiring the use of a flag to carry information between regis-
ters. Each use of a variable is equivalent to the use of the associated register as an operand; each
definition of a variable corresponds to the use of the associated register as a destination. Pro-
grams that contain only single-precision arithmetic typically begin by turning the carry-block flag
on via CBON().

The main challenges in writing single-precision arithmetic in HERA are the potential to run
out of registers (see Chapter 6) and the need to put each intermediate result and literal, as well
as each variable, in a register. Sometimes Rt (the temporary register, R11) or the register for the
variable being defined can serve these purposes. So, for example, we might think of the expres-
sion a := 7*(b+c)+4*d as the sequence of binary operations a:=b+c; Rt:=7; a:=Rt*a; Rt:=4;

Rt:=Rt*d. Figure 4.1 shows the HERA equivalent of a := 7*(b+c)+4*d; e := d-c, assuming
we associate a with R1, b with R2, etc.. Note the use of SETLO for the literals 7 and 4; SET could
also be used, though a single SETLO should require less time and consume less energy than the

// Set R1 to the single-precision sum of 7*(R2+R3)+4*R4, R5 to R4-R3

CBON() // Turn on carry-block, disabling carry flag, for single-precision

// ... (possibly more instructions other than CBOFF)

// start by computing 7*(R2+R3)

ADD(R1, R2,R3) // R1 = R2 + R3, regardless of incoming carry flag

SETLO(Rt, 7) // Put 7 in a register so that we can multiply by 7

MUL(R1, Rt,R1) // With CB on, MUL computes the low 16-bits of the product

// next, find 4*R4 and add it to the above

SETLO(Rt, 4)

MUL(Rt, Rt,R4) // Rt is now 4*R4

ADD(R1, R1,Rt) // R1 = R1 (i.e. 7*(R2+R3)) + Rt (i.e., 4*R4)

// last step: R5=R4-R3

SUB(R5, R4,R3) // R5 = R4 - R3, regardless of carry flag

Figure 4.1. Single-Precision Arithmetic.
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SETLO/SETHI sequence produced by SET. SET has the advantage of working for all single-precision
values, rather than just the range −128 ....127. The HERA machine language for Figure 4.1 is
3160 a123 eb07 c1b1 eb04 cbb4 a11b b543 (here and below, machine language is written in
hexidecimal without the preceding 0x).

Arithmetic operations that are not included in the HERA instruction set, such as division,
remainder, exponentiation, etc., are typically handled by calling a function written in HERA
(possibly as part of a library of functions; the Tiger standard library for HERA includes single-
precision integer division and remainder functions). The use and creation of HERA functions is
discussed in Chapter 7.

Note that there may be many HERA equivalents for a single high-level language program,
just as there are multiple ways to express a given algorithm in a high-level language (such as the
five-step sequence of assignments discussed as an equivalent to a := 7*(b+c)+4*d above). As
noted above, SET(Rt, 4) and SETLO(Rt, 4) produce the same result. Additionally, Figure 4.1
uses the sequence SETLO(Rt, 4) MUL(Rt, Rt,R4) to multiply the value of R4 by four; the
sequence ASL(Rt, R4) ASL(Rt, Rt) would produce the same result (apart from flags, which
we’re ignoring in single-precision). In some cases, a clever sequence can save significant program-
ming effort, for example if we had needed to divide R4 by 4, we could have written ASR(Rt, R4)

ASR(Rt, Rt) with much less effort than we would have expended in writing a general-purpose
division function. Such distinctions among different ways of producing the a result can be of vital
importance when programming performance-critical software or writing an optimizing compiler,
but the exact impact of a given change sometimes depends on the hardware design of the HERA
chip, and so this topic will be largely ignored hereafter.

HERA assemblers accept single-quoted characters (i.e., characters surrounded by apostrophes,
such as ’?’) according to the rules given in Section 3.3 for details of strings. For example, the
assembly language SETLO(R3, ’X’) would be translated into e358, since the ASCII and Unicode
[Uni12] encoding systems give ’X’ the same binary pattern that would be used for the integer 88
(0x58). The assembly-language SETLO(R3, 88) and SETLO(R3, 0x58) also produce e358.

Comparisons are usually performed with the CMP pseudo-operation; literal character values are
often placed in Rt or a register that does not currently hold an important value (as shown with
literal integer values above). So, to check if a value in R3 is > the value for ’A’, we could use the
sequence SETLO(Rt, ’A’) CMP(R3, Rt), after which the flag would set according to the result of
R3 − Rt (i.e., R3 > ’A’, the subtraction would be nonnegative, so s would be off). Since CMP

changes flags but not register values, it is typically followed by a branch operation, as discussed
in Chapter 5.

4.2 Double-Precision or Mixed-Precision Arithmetic

To manipulate values that cannot fit in a single 16-bit register, we can use multiple registers to
record a single value. For example, 32-bit numeric values can be recorded in pairs of registers;
this is known as double-precision computation. Figure 4.2 illustrates double-precision addition,
using R1 and R2 together to represent a 32-bit value, with R1 holding the higher-order (leftmost
16) bits and R2 the lower-order (rightmost 16) bits. The program gives the [R1 R2] pair the sum
of three other 32-bit values.

Note that each double-precision addition step consists of a pair of HERA ADD instructions, the
second of which will respect the value of the carry flag that was produced in the first. This is
analogous to the fact that we must respect the fact that there may or may not be a carry when
we manually sum two digit numbers, e.g., 18 + 24 or 31 + 11. Note that these pairs of ADD

instructions are preceded by a step to explicitly turn the carry flag off, to avoid inappropriately
adding 1 to our result if c happened to have been set prior to starting the sequence.
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A sequence of SUB instructions will similarly use c to ensure that borrowing takes place appro-
priately. Note that, since c is defined as the absence of a borrow, c must be turned on before
starting a sequence of one or more SUB instructions (unless, of course, carry-block is on). The last
three lines of Figure 4.2 illustrate double-precision subtraction. Without the preceding CON

instruction to set c to true, the c flag would presumably be false, since we expect the sum com-
puted in the previous steps to fit in 32 bits (if we were not confident of this fact, we could use
higher precision, or use a branch instruction to test c and branch to error-handling code if our
expectation did not hold). Thus, in the absence of a step to explicitly set c to true and indicate
the absence of a prior need to borrow, the SUB(r8, r8,r2) would set R8 = R8 − R2 − 1 rather
than the hoped-for R8 = R8 − R2. While the convention “carry indicates the absence of borrow”
may seem odd to novice assembly-language programmers, it simplifies some hardware compo-
nents, and is thus found on many microprocessors.

Multiplication of double- (or higher) precision values is left as a challenge for the reader. The
HERA machine language for Figure 4.2 is 3968 3868 a246 a135 3868 eb40 fb42 a22b eb0f

a11b 3068 b882 b771.

4.3 Higher Precision and Non-Integer Numeric Values

Larger groups of registers can, of course, be used for higher precision, though when registers
cannot hold all bits of all values, some data must be stored in main memory (see Chapter 6).
Non-integer numeric types typically found in high-level languages, such as floating-point approxi-
mations of real numbers, rational numbers, complex numbers, vectors, matrices, etc., are usually
implemented in HERA as user-defined data types. Values of user-defined types can be seen as
sets of bits stored in registers or main memory, for which all operations are performed via calls to

// Make [R1 R2] the (double-precision) sum of [R3 R4] + [R5 R6] + 1000000;

// finally, update [R7 R8] by subtracting the above total from it

CCBOFF() // Enable use of carry flag for multiple-precision arithmetic

// ... (possibly other instructions that may set or clear the carry)

// start by finding [R3 R4] + [R5 R6]

COFF() // Start with carry-in=0 for least-significant word

ADD(R2, R4,R6) // R2 = R4+R6, carry set if necessary

ADD(R1, R3,R5) // R1 = R3+R5 (plus carry, if set by R4+R6)

// now add 1000000 to the above

COFF() // Start with carry-in=0 for least-significant word

SET(Rt, 16960) // 16960 is the lower 16 bits of 1000000, i.e., 1000000 %65536

ADD(R2, R2,Rt) // R2 = R2+Rt (i.e. R4+R6+16960), carry set if necessary

SETLO(Rt, 15) // 15 is the higer 16 bits of 1000000, i.e., 1000000//65536

ADD(R1, R1,Rt) // R1 = R1+Rt (plus carry, if set), i.e., high word of the sum

// next calculation: subtract the above from [R7 R8]

CON() // Make sure carry-in=1 for subtraction without borrow

SUB(R8, R8,R2) // Set low word to R8-R2 (leaves carry-flag=0 if it borrowed)

SUB(R7, R7,R1) // Set high word to R7-R1 (-1 if incoming carry was 0)

Figure 4.2. Double-Precision Arithmetic.
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functions that encapsulate the details of how the bits relate to abstract values. This is essentially
like a definition of a class in which the data fields are a collection of bits (or characters or inte-
gers); it can also be seen as a generalization of the implementation of integer division and
remainder in HERA library functions.
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Chapter 5

Local Control Flow

High-level languages provide a variety of keywords, such as if/then/else, while loops, for

loops, etc., for varying the usual line-by-line order of program execution within each function (or
procedure, coroutine, or method). HERA provides a variety of branch operations that can be
used to create patterns equivalent to if/then/else, while, for, and many other appropriate and
inappropriate forms of control flow within a function (with CALL and RETURN handling transfer
between functions, etc., as will be discussed in Chapter 7). After significant unpleasant experi-
ence with “unstructured control flow”, assembly-language programmers now often choose to think
about local control flow in high-level terms. Specifically, they typically start coding by writing
high-level constructs (if/then/else, etc.) as comments, and then write the assembly-language
among these comments. Thus, the only unfamiliar task is the choice of branching instructions
that corrospond to the high-level structure.

5.1 Choosing Appropriate Branch Instructions

Register-mode branches such as BR/BGE/BZ differ from the corresponding relative branches
BRR/BGER/BZR in that the former require that the destination address be placed in a register (Rt,
by convention, in assembler-generated code), and the latter require that the destination not be
too far from the branch itself. So, for example, after the sequence SET(Rt, 0x0174) BR(Rt) (or,
equivalently, eb01 fb74 100d in machine language), the processor will execute whatever instruc-
tion is in instruction memory cell 0x0174, then 0x0175, then 0x0176, etc. (unless 0x0174 or
0x0175 contains a branch, call, or return instruction). A single BRR(4) instruction (0004 in
machine language) in instruction address 0x170 would also branch to 0x0174, as would a BRR(-4)

(00fc in machine language) in instruction address 0x0178, but there is no way to get from
instruction address 0x3944 to 0x170 with a relative-mode branch. Register-mode branches are
thus more general, in that they are always correct as long as no important information has been
left in Rt, but relative branches may execute more efficiently when they are legal.

Conditional branches such as BZ/BZR (branch on zero) and BGE/BGER (branch on greater-than-
or-equal) transfer only under a specific condition, otherwise going on to the next instruction; they
thus correspond to branching points in the flow of control, such as after the test of an if or
while, or after a for loop determines whether or not another iteration is needed. Unconditional
branches (BR/BRR) always transfer control to the destination instruction, as would be done when
code in a high-level-language completes statements of the “then” part of an if/then/else and
unconditionally skips over the statements controlled by the else, or when execution of a while

loop “goes back up” to test the condition again after executing the statements of the loop body.
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5.2 Combining Tests and Branches

Conditional control flow in HERA is typically expressed via a combination of arithmetic or com-
parison instructions, which set flags, and conditional branches, whose actions will be controlled
by those flags. Figure 5.1 shows a program that uses CMP(R1,R0) to adjust the flags as they
would be for R1 − 0, and then BGER to branch if the flags indicate a non-negative result for sub-
traction of signed integer quantities (i.e., if (s ⊕ v) is false, indicating a non-negative value
without an overflow or an apparently negative value in the presence of overflow). Thus, the nega-
tion of the value in R1 is skipped if R1 is already positive. Figure 5.1 illustrates a style of
indenting branches, calls, and labels less than other code, to draw attention to the program struc-
ture, though this is not required for the code to execute correctly.

An assembler would typically produce 3160 e1b6 3068 b010 0303 3068 b101 3111 for this
program. If we had used a BGE instead of BGER, and it were placing instructions into addresses
starting at 0x0200, it would typically use SET to put 0x0209 (the address of the LSR instruction
labelled SKIP_NEGATION) into R11, producing 3160 e1b6 3068 b010 eb09 fb02 130b 3068 b101

3111 instead.

// Make R1 = (abs(R1))/2 (using R1=-74, for example). In other words:

// if R1 < 0

// then R1 = -R1

// endif

// R1 = R1/2

CBON() // Use single-precision

SETLO(R1, 0xB6) // Try -74 for this example

// if R1 < 0 // i.e., skip the "then" part if R1>=0

CMP(R1,R0) // set flags for R1-0, i.e., SUB(R0, R1,R0)

BGER(SKIP_NEGATION) // if flags show result >= 0, skip over SUB

// then R1=-R1

NEG(R1, R1) // negate R1, i.e., SUB(R1, R0,R1)

// endif

LABEL(SKIP_NEGATION)

// R1=R1/2

LSR(R1, R1) // divide by 2 via logical shift right

Figure 5.1. Control Flow and HERA Branch Instructions.
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Chapter 6

Bigger Data

When a program needs to process more data than can fit in registers, some data must be placed
in the main memory system. HERA follows the traditional view of the computer’s memory
system—essentially, it views memory as one large array of values, in which each element is identi-
fied by an integer index known as the address of the element. Assembly-language LOAD and STORE

instructions provide a common foundation that can be used to handle a variety of situations in
which not all information fits in registers, including high-level language features such as arrays,
strings, record/class-type objects, “bignum” numbers (i.e., integers potentially having values too
large for even double-precision), separate variables for each function, and large numbers of vari-
ables within one function.

HERA’s LOAD instruction retrieves a value from a memory cell and places it into a register;
the value in a register can be stored into a memory cell via the STORE instruction. The address of
the memory cell used in a LOAD or STORE is computed by adding a small constant offset (often
zero) to a “base address” given in a register. For example, to retrieve the value of memory cell 6
into register 3, we could put 6 into a register (e.g. R1) and then use a LOAD with offset zero (e.g.,
SET(R1, 6) LOAD(R3, 0,R1)). Conversely, to store the value in R7 into memory cell 6, we could
use SET(R1, 6) STORE(R7, 0,R1).

HERA’s data statements (see Section 3.3 and examples below) can be used to place data in
memory before a program starts. An assembler would convert a program with data statements
into a pair of sequences of values, one for the data memory, and one for the instruction memory.
The machine language values for examples are based on the assumption that the assembler places
the first data statement in cell 0xC001 of the data memory, and the first instruction in cell 0 of
the instruction memory, as is done by the HERA-C system and Hassem assembler.

The remainder of this chapter uses LOAD, STORE, and data statements to illustrate many of the
situations for which data are typically stored in main memory: values of some types, such as
arrays, strings, and user-defined classes, may be too large to fit in the available registers, and
even for small types such as single-precision integers or characters, the number of variables may
exceed the number of available registers. Main memory is also used to provide separate local vari-
ables for each function, but techniques for creating HERA functions are subtle enough to warrant
their own chapter. Memory is also used to implement the free-store heap, in languages that use
this mechanism for potentially-long-lived objects created during program execution, but
alogrithms for managing a free-store heap are beyond the scope of this document.

6.1 Global Variables Stored in Main Memory

The assembler will automatically allocate memory in response to the DSKIP and INTEGER data
statements, with the latter initializing the memory to a single-precision integer (or character)
value. Memory allocated in this way can be identified by preceding it with a DLABEL, which can
then be used as the operand of a SET operation that places its address in a register (which is then
typically used as the address operand of a LOAD or STORE).
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Figure 6.1 illustates two idioms for allocating and using variables in main memory. For the
first (used for Y:=X+5), each allocated object is given its own DLABEL, and that name is SET into a
register before the variable is used (via LOAD) or set (via STORE). For the second, a single DLABEL

precedes the set of objects, and then the offset operand of the LOAD and STORE is used to identify
the memory locations we think of as X (at offset 0 from Variables), Y (offset 1), and Z (offset 2).
Note that offsets are restricted to the range 0....31; programs with very large sets of variables can
employ multiple labels or combine some offsets via explicit ADD instructions.

The assembler would both produce a sequence of instructions (3160 eb01 fbc0 410b 3184

eb02 fbc0 610b e101 f1c0 4201 4311 a333 a223 4321 b223 6201 0000 and a set of data-
memory initializations (putting 000c, i.e., 12, into cell 0xC001, and 0004 into 0xC003) for the
program shown in Figure 6.1. Note that the Hassem assembler, the HERA-C system, and other
tools for HERA may require that all data statements precede any instructions.

// Given (single-precision) integer variables X, Y, and Z,

// with X initialized to 12 and Z initialized to 4,

// execute "Y:=X+5; X:=X+2Y-Z".

// First, data statements allocating and perhaps initializing X, Y, Z

DLABEL(Variables)

DLABEL(X)

INTEGER(12) // Initial value of X

DLABEL(Y)

DSKIP(1) // Uninitialized space for 1 variable (Y)

DLABEL(Z)

INTEGER(4) // Initial value of Z

// And now, the program ... first, select single-precision

CBON()

// Y:=X+5, using the "specific labels for each variable" idiom

SET(Rt, X) // Rt is now the _address_ of X

LOAD(R1, 0,Rt) // R1 is now the _value_ of X

INC(R1, 5) // R1 is now X+5

SET(Rt, Y) // Rt is now the addres of Y

STORE(R1, 0,Rt) // Store that X+5 in address for Y

// X:=X+2Y-Z, using the "specific offsets from one label" idiom

SET(R1, Variables)

LOAD(R2, 0,R1) // R2 is now X (0 past "Variables")

LOAD(R3, 1,R1) // R3 is now Y

ADD(R3, R3,R3) // R3 := R3+R3, now R3 is 2Y

ADD(R2, R2,R3) // R2 := R2+R3, so R2 is X+2Y

LOAD(R3, 2,R1) // R3 is now Z (and R2 X+2Y)

SUB(R2, R2,R3) // R2 := R2-R3, so R2 is X+2Y-Z

STORE(R2, 0,R1) // Store R2 as new X value, so X:=X+2Y-Z

HALT() // Program is now done

Figure 6.1. Integer Variables Stored in Memory
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6.2 Arrays and Address Arithmetic

The assembly language equivalent of an array variable is a sequence of consecutive memory cells
that contain the values of the array, and for which the address of the initial element is known.
Figure 6.2 shows an example with two such arrays, following the convention that the first value is
preceded by the array size.

Using this convention, we can find the address of a particular element by multiplying the
array index by the element size and adding a “base address” for the array. If the array contains
single-precision values, we can omit the multiplication by one, of course, and find the base
address via a DLABEL before the memory cell for the size (if we like to think about array indices
starting at one; if we like to count subscripts from zero, a DLABEL can be placed before the initial
value in the array). The lines involving Rt in Figure 6.2 use this approach to place the value 11
in the fifth entry of ArrayOfPrimes (the value 11 could, of course, have been placed there in the
initialization step instead).

This addition of base address and index could be done for every reference to an array, though
for many programs this can be greatly simplified. For example, for a program that goes through
all elements of an array in order, a register can be used to identify the address of the “current”
element, and this address simply incremented to move to the next element. Figure 6.2’s creation
of ArrayOfSevenSquaredOfPrimes shows an example of this approach, in which R1 holds the
address of the current element about to be read, and R2 the address of the element about to be
written.

The machine-language version of Figure 6.2 is 3160 eb01 fbc0 e105 abb1 e10b 610b e101

f1c0 e209 f2c0 4301 6302 33c0 0207 3180 3280 4401 c444 6402 00f9 0000; the data
memory will be initialized with 0007 0002 0003 0005 0007 in locations 0xC001...0xC005, and
000D 0011 in 0xC007 and 0xC008.

Multi-dimensional arrays are represented in a variety of ways in high-level languages. For
example, a three by seven array of single-precision values could be handled as an array of three
elements of seven single-precision values (i.e., a set of 21 values in consecutive memory cells); or
it could be handled as an array of three single-precision values, each of which provides the
memory location of an array of size seven; or it could be handled in a variety of other ways if we
needed to, for example, efficiently select either rows or columns from the two-dimensional struc-
ture. The advantages and disadvantages of these approaches are outside the scope of this docu-
ment.
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// Given a length-prefixed array of very small (below sqrt(2**16)) primes,

// compute the square of each one,

// placing results in an array of single-precision values.

// ArrayOfSevenPrimes is initialized to [2, 3, 5, 7, -, 13, 17]

DLABEL(ArrayOfSevenPrimes) // Note that 11 is missing in the array below

INTEGER(7) // array size given first, by convention

INTEGER(2) INTEGER(3) INTEGER(5) INTEGER(7) DSKIP(1) INTEGER(13) INTEGER(17)

// ArrayOfSevenSquaredPrimes is 8 uninitialized spaces

DLABEL(ArrayOfSevenSquaredPrimes)

DSKIP(8) // will be initialized in the program, allocate 8 spaces

// And now, the program ... first, select single-precision

CBON()

// Finish initialization of ArrayOfSevenPrimes, since we left out 11 above

// Use "add offset to the base" idiom (offset = index if we count from 1)

SET(Rt, ArrayOfSevenPrimes) // base address of array

SETLO(R1, 5) // offset from that base, where we want 11

ADD(Rt, Rt,R1) // address where we want the 11

SETLO(R1, 11)

STORE(R1, 0,Rt)

// Now create ArrayOfSevenSquaredPrimes

// Use "keep relevant address in a register" idiom

SET(R1, ArrayOfSevenPrimes) // R1 will be current place in 1st array

SET(R2, ArrayOfSevenSquaredPrimes) // R2 current place in 2nd array

LOAD(R3, 0,R1) // get size of ArrayOfSevenPrimes

STORE(R3, 0,R2) // set size of ArrayOfSevenSquaredPrimes

// while (--N_remaining >= 0) // this is like a C-style while loop

LABEL(SquareNextOne)

DEC(R3, 1) // R3 is now 1 less than the number remaining

BLR(NoMoreSquares) // If R3 is now less than 0, we are done.

// body of while loop

INC(R1, 1) // Move R1 (then R2) on to next memory cells

INC(R2, 1)

LOAD(R4, 0,R1) // Get next element of ...Primes

MUL(R4, R4,R4) // Square it (note CB is on, for single-precision)

STORE(R4, 0,R2) // Set next element of ...SquaredPrimes

// end of while loop

BRR(SquareNextOne) // Go back and maybe do some more

// after while loop

LABEL(NoMoreSquares)

HALT()

Figure 6.2. Reading and Writing Length-Prefixed Arrays
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6.3 Strings of Characters

High-level languages use a variety of mechanisms to represent strings of characters in memory,
including sequences of non-null characters terminated by a null character (character 0), as in
most C/C++ libraries; a length field followed by that many characters in the subsequent memory
cells, as in Pascal and in Andrew Appel’s “Tiger” language; and others. We could initialize either
of these representations, or some other, with a collection of INTEGER data statements providing
specific character values and/or size information.

For convenience, the assembler’s LP_STRING data statement creates a sequence of character
values preceded by a character count (as in Tiger, a string is an array of characters). Note that
these strings still follow C-language conventions for escape characters. Figure 6.3 shows an
example string processing program. The machine language for Figure 6.3’s instructions would be
3160 e100 f100 e201 f2c0 4302 3280 4402 e53f f500 b045 0902 3180 3280 33c0 09f8

e233 f2c0 6102 0000, and the data segment contains with the size (49, i.e., hexidecimal 0031)
and characters (’I’, i.e., 0049, ’s’, i.e., 0073, and so on...) of The_string.

Hereafter, translation into machine language is left to any reader(s) interested in doing so.

// Count the number of times "?" appears in a String (single precision),

// and save the result in the memory cell labelled N_questions.

// The example uses a constant string created with TIGER_STRING,

// though the algorithm could be used for any string of this form.

DLABEL(The_string)

LP_STRING("Is this an example? With three questions? Really?")

DLABEL(N_questions)

INTEGER(0)

CBON()

SET(R1, 0) // R1 will be the number of ’?’ found, initially 0

SET(R2, The_string) // R2 is now the address in memory of the string

LOAD(R3, 0,R2) // R3 = initial memory cell of a string (the length)

INC(R2, 1) // R2 = address of initial char. (’I’, in this example)

LABEL(top_of_loop)

LOAD(R4, 0,R2) // R4 is now the character itself

SET(R5, 63) // R5 is the character ’?’

SUB(R0, R4,R5) // Set flags for the character (i.e., R4) - ’?’

BNZR(not_a_question) // Skip the counting if R4-’?’ is not zero

INC(R1, 1) // Count one question

LABEL(not_a_question)

INC(R2, 1) // Move R2 to indicate the next character

DEC(R3, 1) // Decrease the count of how many remain

BNZR(top_of_loop) // If something other than 0 remain, keep going

SET(R2, N_questions)

STORE(R1, 0,R2) // Store the result in memory

HALT()

Figure 6.3. Counting the Number of Question Marks in a Tiger-style String

6.3 Strings of Characters 35

The Haverford Educational RISC Architecture, Version 2.4.0, October 2018



6.4 Records and Class-type Objects

A record or class-type object with n fields can be thought of as a collection of n values, similar to
an array, except that we may not need to record the number of fields, and the fields may have
different sizes in memory. Fortunately, all these things are typically known when accessing a field
of an object.

For example, if a program represents of a Point class with a single-precision integer encoding,
say, color, and then has two double-precision integers encoding x and y offsets, we could consis-
tently use five consecutive memory cells for each object, with offset 0 for the color, offsets 1 and 2
for the x offset, and offsets 3 and 4 for the y offset. This fits well with the ability of HERA (and
most RISC architectures) to combine a base address with a small constant offset, so that if we
have the base address of a Point in R2, and want to load its y field into R6 and R7, we could
write LOAD(R6, 3,R2) LOAD(R7, 4,R2).
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Chapter 7

Assember Macros and HERA Functions

In a high-level language, a programmer can avoid repeatedly writing out a common group of
steps by collecting them into a function (or procedure, or method, etc.) and then calling that
function in several places. The language system can then reuse the steps of the function for each
of the calls, via any of a number of possible mechanisms.

The mechanism that is usually discussed when function calls are taught, and shown when
functions are explored in a debugger, involves transferring control to, and then back from, a
single copy of the instructions for the function’s body. Function call inlining is an alternative to
this transfer-of-control mechanism, in which the body of the function is copied into each point at
which the function is called.

In practice, many language systems employ some blend of these mechanisms, since the rela-
tive merits vary between functions. When inlining is performed before the program runs, e.g. by
a classic compiler, it saves the run-time costs of branching to and from the function body. How-
ever, it can exponentially increase the size of the program, and simple implementactions cannot
be applied to recursive functions or for dynamic dispacth (as used for overridden methods in
object-oriented languages). Implementation of inlining may also require careful disambiguation of
variable names that have different meanings in the called and calling function.

Assembly-language programmers can manually select a simple form of inlining by writing
macros rather than function definitions. Simple macros, such as those provided by the antiquated
yet widely-known #define mechanism of the C preprocessor, perform textual substitution
without disambiguating names. Note that the lack of automatic name disambiguation can lead to
subtle bugs, e.g. the definition #define sphereVolume(radius) (pow(radius, 3)*M_PI*4/3)

might seem like a foolproof way to find the radius of a sphere by using the C library definitions of
pi (π) and pow (exponenentiation), until you (or a friend who is less familiar with the macro) use
sphereVolume in code with a local varaiable named M_PI or pow.

The details of using macros and transfer-of-control for functions are discussed briefly in the
upcoming sections of this chapter; for detail, consult a text on compiler design, e.g. [App98].
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7.1 Macros in HERA-C and Hassem

HERA-C and Hassem borrow C’s #define mechanism, along with its strengths and weaknesses.
The problem of name confusion is particularly critical in assembly language code, where all code
shares the same registers, register names, label names, and global data statements. Thus, macros
are typically chosen over functions only for simple code that does not require additional registers,
labels, etc. For example, a program that performs a lot of double-precision arithmetic might
begin by defining ADD_DP and ADD_SP macros, each with three pairs of operands, as shown in
Figure 7.1. Note that line breaks within macro definitions must be preceded by a backslash.

Since each use of a macro expands to the instructions given in the macro definitions, Figure
7.1 produces to the same sequence of 13 machine-language instructions as Figure 4.2, except that
the latter places the literal value 15 into Rt instead of R10, and does so after the first of the two
parts of the addition of 1000000.

Functions are typically used when code requires additional registers, labels, or global data, or
is in some way complex. Sometimes an exception is made when the run-time overhead of a call
would pose a performance problem, in which case macros are used with great care. For a more
extensive discussion of the use and perils of C’s #define mechanism, consult references for the C
programming langauge.

#define ADD_DP(d_hi,d_lo, a_hi,a_lo, b_hi,b_lo) \

COFF() ADD(d_lo,a_lo,b_lo) ADD(d_hi,a_hi,b_hi)

#define SUB_DP(d_hi,d_lo, a_hi,a_lo, b_hi,b_lo) \

CON() SUB(d_lo,a_lo,b_lo) SUB(d_hi,a_hi,b_hi)

// Make [R1 R2] the (double-precision) sum of [R3 R4] + [R5 R6] + 1000000;

// finally, update [R7 R8] by subtracting the above total from it

CCBOFF() // Enable use of carry flag for multiple-precision arithmetic

// ... (possibly other instructions that may set or clear the carry)

// start by finding [R3 R4] + [R5 R6]

ADD_DP(R1,R2, R3,R4, R5,R6)

// now add 1000000 to the above

SET(Rt, 16960) // 16960 is the lower 16 bits of 1000000, i.e., 1000000 %65536

SETLO(R10, 15) // 15 is the higer 16 bits of 1000000, i.e., 1000000//65536

ADD_DP(R1,R2, R1,R2, R10,Rt)

// next calculation: subtract the above from [R7 R8]

SUB_DP(R7,R8, R7,R8, R1,R2)

Figure 7.1. Figure 4.2 Rewritten to Use a Macro for Double-Precision Addition
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7.2 Function Calls and Stack Frames

HERA, like most modern architectures, provides special instructions to assist with the transfer-
of-control approach to function-call implementation. The HERA CALL instruction is used to
branch to the start of a function; it differs from BR in that it updates the frame pointer and
records the return address . The return address is the address of the instruction after the CALL,
i.e., the instruction to which the program should branch when the function is done. The frame
pointer (R14, also known as FP ) is used, along with the stack pointer (R15, a.k.a. SP ), to ensure
that each function call has a distict frame, i.e., region of memory in which to record information
specific to that call. The end of the called function uses the HERA RETURN instruction to transfer
control back to the calling function by restoring the program counter (to the return address,
which is also known as the control link) and frame pointer (to the frame pointer for the calling
function, which is known as the dynamic link for the called function).

The exact nature and organization of stack frame information depends on the nature of the
program being run and the algorithms used to implement high-level language techniques. The
frame may contain some information that is evident even in a high-level language, such as values
of local variables and parameters. The frame may also be used to store information that “links
together” the different calls and frames, including the aforementioned control link and dynamic
link, as well as the static link , which gives the frame pointer for the stack frame of the code that
contains the code for function being executed. The static link is important when a function
makes use of a variable from that surrounding code, for example, as the two_a_plus_y function
of Figure 7.2 makes use of the variable a from the function foo, which contains the definitions of
both two_a_plus_y and a (as foo’s first parameter). These links are usually put in standardized
places in the frame, e.g. the return address in memory cell FP , the dynamic link in FP + 1, and
the static link in FP + 2 (any arrangement can work as long as calling and called function are
consistent).

Figure 7.3 shows what the stack frames for foo and two_a_plus_y might look like, if the
instructions for the function foo run from instruction addresses 1000 to 1030, with the CALL to
two_a_plus_y at instruction 1020, and if foo is executed with FP = 100 and SP = 105 (i.e., a
five-element stack frame starting at 100). In this case, two_a_plus_y would have the five-element
stack frame shown in the figure: the R.A. for two_a_plus_y will be 1021, since the CALL is
instruction #1020; the D.L. will be 100, since foo’s stack starts there; the S.L. will also 100,
since the source code for two_a_plus_y is contained within the code for foo; the value of

let foo(int a, int b): int =

let two_a_plus_y(y : int): int =

let two_a = a+a

in two_a+y

end

in

two_a_plus_y(b-a+75) * a

end

in

printint(foo(2, 10))

end

Figure 7.2. Example Function Calls with Local Variables
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two_a_plus_y’s parameter y will be 83,; and the value of the local variable two_a will be 4. The
stack frame for foo would contain analogous information; since Figure 7.2 does not show the code
that calls foo, the values of foo’s links are shown as “??? ”.

This frame layout, together with the convention that FP will point to the beginning of the
frame of the currently-executing function, lets each function access the data it needs. For
example, two_a_plus_y could retrieve the value of its parameter y from its own stack frame into
R1 via the instruction LOAD(R1, 3,FP); two_a could similarly be retrieved with offset 4. The
static link provides access to foo’s variable a, via e.g., LOAD(R2, 2,FP) LOAD(R2, 3,R2).
Although the static and dynamic links are identical for the code of Figure 7.2, this is not always
the case, e.g. if foo had called another function that had, in turn, called two_a_plus_y.

There are a number of subtle details involved in implementing each approach to organizing
stack frames, so the full detail will be presented after discussion of some simple cases.

7.3 Simple Cases: Calls to Trivial or Library Functions

For some simple kinds of function calls, we may not have to build and use a complete stack
frame. For example, if a function is to be used to perform specific updates to specific hardware
registers, the purpose of CALL and RETURN is simply to transfer control into the function and
back. When we call a pre-written function from a library, we must initialize the stack frame in a
way that is consistent with the function’s body, but we need not write the body of the function
or be familiar with the elements of the frame that will be updated within the function.

The remainder of this section will provide examples of basic usage of HERA’s CALL and
RETURN instructions for these cases; the subsequent sections provide more detail about the tech-
niques used to create the function bodies. Throughout this chapter, we will follow conventions
used for/by the HERA-C system and the Hassem assembler. Specifically, in each CALL and
RETURN, we will use R12 for the new value of the frame pointer, and R13 as the branch address.

(↑Higher addresses)
←−114 (tapy’s SP /next free cell)

4 (tapy’s two_a)
83 (tapy’s y)
100 (tapy’s S.L.)
100 (tapy’s D.L.)
1021 (tapy’s R.A.) ←−105 (foo’s SP/tapy’s FP )

10 (foo’s b)
2 (foo’s a)
??? (foo’s S.L.)
??? (foo’s D.L.)
??? (foo’s R.A.) ←−100 (foo’s FP )

(... other frames)

Figure 7.3. Frames for a Sample Function Call Stack
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To emphasize these conventions, HERA-C and Hassem provide the names PC_ret for the branch
address/return address (R13) and FP_alt for the alterate frame pointer (R12). Proper idiomatic
usage is thus always CALL(FP_alt, label) and RETURN(FP_alt, PC_ret).

7.3.1 A Trivial Function and a Call Thereof

Figure 7.4 illustrates the use of HERA’s CALL and RETURN for a trivial function that adds 2R1 +
R2 to the existing value of R3. Since the purpose of this function is simply to update some regis-
ters, we do not need a stack frame for parameters or local variables, and can ignore the role of
the frame pointer and FP_alt for now.

Recall that the assembler automatically converts labels into address numbers; since the label
update_r3 precedes Instruction 12, the assembler turns each CALL(FP_alt, updateR3) into the
three-instruction sequence SETLO(R13, 12) SETHI(R13, 0) CALL(R12, R13). Since R13 and the
upcoming the value for the PC are exchanged by CALL(R12, R13), the call at Instruction 5 will
save 6 into R13 while branching to Instruction 12, and the call at Instruction 10 will save 11 in
R13 while branching to Instruction 12. In either case, the HERA processor will then execute
Instructions 11-13, followed by the RETURN at instruction address 14. Since RETURN(R12, R13)

does the same R13 ⇆ upcoming-PC switch as CALL(R12, R13), but R13 now has the value 6

// This program demonstrates function calls, using one simple

// function to repeatedly add 2*R1+R2 into existing value of R3,

// First with R1=100,R2=50, then with R1=10,R2=3.

CBON() // Instruction 0

SETLO(r1, 100) // Instruction 1

SETLO(r2, 50) // Instruction 2

// Auto-generated instructions 3&4 SETLO/SETHI(R13, updateR3)

CALL(FP_alt, updateR3) // Instruction 5: CALL(R12, R13)

SETLO(r1, 10) // Instruction 6

SETLO(r2, 3) // Instruction 7

// Auto-generated instructions 8&9 SETLO/SETHI(R13, updateR3)

CALL(FP_alt, updateR3) // Instruction 10: CALL(R12, R13)

HALT() // Instruction 11

// The body of updateR3:

// compute 2*r1 + r2, leaving the result in r3

LABEL(updateR3)

ADD(r1, r1,r1) // 2*r1 (Instruction 12)

ADD(r1, r1,r2) // 2*r1+r2 (Instruction 13)

ADD(r3, r3,r1) // r3+=2*r1+r2 (Instruction 14)

RETURN(FP_alt, PC_ret) // go back (Instruction 15)

Figure 7.4. Simple Function and Call, Showing HERA CALL and RETURN Instructions.
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(during the first call) or 11 (during the second call), the RETURN will branch back to either
Instruction 6 or 11, arriving at the proper place after each call.

Note that we could also achieve the effect of our updateR3 with a macro; the most direct
equivalent would be #define updateR3() ADD(R1,R1,R1) ADD(R1,R1,R2) ADD(R3,R3,R1). For
that definition, we would write updateR3() instead of the CALL instructions of Figure 7.4. If we
wanted to provide more flexiblity, we could, for example, let the program add 2R1 + R2 to any
register, via #define updateAny(Any) ADD(R1,R1,R1) ADD(R1,R1,R2) ADD(Any,Any,R1), and
write updateAny(R3) instead of the call. To create an a more flexible function, we will need to
use techniques from the upcoming sections.

7.3.2 Calling Library Functions that Expect Parameters in Registers

One convention that is often adopted for functions is to place the parameters values in registers
R1...Rn (for an n-parameter function, assuming n 6 10), and place the returned value (if any) in
R1 (or, m values can be returned in R1...Rm, assuming m 6 10). In this case, the functions may
or may not also identify some registers that will remain unchanged. While the bodies of such
functions are more complex than that of updateR3, calls to them are just as easy, as long as we
respect the conventions when we choose which registers will be used for which values in our code
and ensure that FP_alt is initialized to the value of SP so that the function starts with a valid
empty stack frame.

Figure 7.5 illustrates the use of this convention for a program that calls library functions (not
shown) for computing integer quotients and for printing integers and strings. The expectations
about register usage are documented in the comments, and must be consistent with the actual
function definitions (in particular, that R1 and R2 are used for parameters 1 and 2, that the
return value is placed in R1, and that R2 and R4 are not changed by any functions we call).
Much of the challenge in using this idiom lies in ensuring that the necessary value is in the neces-
sary register at each step of the computation.

7.3.3 Calling Library Functions that Expect Parameters in the Stack

When there are not enough registers to hold all the parameters and the other local variables, we
must place some values into memory. One approach to doing so involves creating a stack frame
for the function to be called, and pre-filling it with the values of the parameters. In this
approach, as with the previous, the calling function must be consistent with the called function.
One additional subtletly is that the called function may require that some initial elements of the
stack frame are skipped before the first parameter, to provide storage for the information that is
needed to link together the function call sequence, i.e., to get back from the called function to the
data or execution of the calling function.

Figure 7.6 shows a variant of Figure 7.5 that is written for functions that use this approach,
reserving the first three spaces of each frame for the “linking together” information, using frame
elements 3 and above for parameters and the return value, and preserving register values. This
idiom involves some additional lines of code, in particular creating a stack frame of size n+ 3 for
a function with n parameters.
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// Use library functions "div", "print", and "printint" to

// print a quotient calculation, e.g. "210//5 = 42"

#include <Tiger-stdlib-reg-data.hera>

// First, global variables, e.g. INT_DIVIDE_AS_IN_PYTHON="//"

DLABEL(INT_DIVIDE_AS_IN_PYTHON) LP_STRING("//")

DLABEL(EQUALS_SIGN_WITH_SPACES) LP_STRING(" = ")

// initialize CB, R1, and R2; any single-precision values are fine for R1,R2

CBON() // library functions may assume CB is set, in this case

SET(R1, 210)

SET(R2, 5)

// Now, the algorithm:

// printint(R1)

// print(INT_DIVIDE_AS_IN_PYTHON)

/// printint(R2)

// print(EQUALS_SIGN_WITH_SPACES)

// printint(div(R1, R2))

MOVE(FP_alt, SP) // put called function’s frame above this one

CALL(FP_alt, printint) // printint prints single-precision integer in R1

// Below, we assume R4 and R5 are not changed in library functions we call

MOVE(R4, R1) // Keep old R1 in R4 while we use R1 for "//"

MOVE(R5, R2) // likewise, keep R2 around...

SET(R1, INT_DIVIDE_AS_IN_PYTHON)

CALL(FP_alt, print) // print prints an LP_STRING given by R1

MOVE(R1, R5) // now print original R2, which we saved in R5

CALL(FP_alt, printint)

SET(R1, EQUALS_SIGN_WITH_SPACES)

CALL(FP_alt, print) // print " = "

MOVE(R1, R4) // now, we’ll need that original value of R1

MOVE(R2, R5) // and the original value of R2

CALL(FP_alt, div) // div finds R1//R2, changes R1 to that

CALL(FP_alt, printint) // conveniently, R1//R2 is where printint wants it

HALT()

#include <Tiger-stdlib-reg.hera>

Figure 7.5. Calls to Library Functions that Use R1...R2 For Parameters and Do Not Change R4 or R5
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// Use library functions "div", "print", and "printint" to

// print a quotient calculation, e.g. "210//5 = 42"

#include <Tiger-stdlib-stack-data.hera>

DLABEL(INT_DIVIDE_AS_IN_PYTHON) LP_STRING("//")

DLABEL(EQUALS_SIGN_WITH_SPACES) LP_STRING(" = ")

CBON() // library functions may assume CB is set, in this case

SET(R1, 210) // any single-precision values are fine for R1,R2

SET(R2, 5)

// Now, the algorithm:

MOVE(FP_alt, SP) // printint’s frame in free space above this frame

INC(SP, 4) // printint frame starts at size 4

STORE(R1, 3,FP_alt) // printint’s first param. in FP+3

CALL(FP_alt, printint) // printint prints single-precision int. in FP+3

DEC(SP, 4) // put SP back where it was

MOVE(FP_alt, SP) // Could omit this here; FP_alt is already = SP

INC(SP, 4) // could omit this if we’d left out DEC above

SET(Rt, INT_DIVIDE_AS_IN_PYTHON)

STORE(Rt, 3,FP_alt) // print’s first param. in FP+3

CALL(FP_alt, print) // print prints an LP_STRING given by FP+3

STORE(R2, 3,FP_alt) // print R2 this time; FP_alt and SP as above

CALL(FP_alt, printint)

SET(Rt, EQUALS_SIGN_WITH_SPACES)

STORE(Rt, 3,FP_alt) // print " = ", FP_alt and SP as above

CALL(FP_alt, print)

INC(SP, 1) // starting frame size is 5 (3, plus 2 param.)

STORE(R1, 3,FP_alt) // first parameter at FP_alt+3

STORE(R2, 4,FP_alt) // first parameter at FP_alt+4

CALL(FP_alt, div) // div puts mem(FP+3)//mem(FP+4) in mem(FP+3)

DEC(SP, 1) // starting frame size is 4 for printint again

CALL(FP_alt, printint) // conveniently, R1//R2 is where printint wants it

DEC(SP, 4) // put things back where they started

HALT()

#include <Tiger-stdlib-stack.hera>

Figure 7.6. Calls to Library Functions that use Frame Locations 3 and 4 for Parameters
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7.4 Parameters in Registers, “Caller-Save” Registers

The simplest approach to writing functions that expect parameters in registers is to make no
guarantees at all about what becomes of the registers other than the one used for the return
value. This “functions may change register values” approach forces the caller to save, before each
CALL instruction, any register values that may be needed after the call. It is thus referred to as a
“caller-save” convention. Note that the called function will need to preserve the return address
and dynamic link (otherwise, it could not return correctly); by convention, caller-save functions
in HERA preserve R12...R15. When the function does not, itself, do any function calls, it can
simply rely on the fact that these registers will remain the same because they have not been
changed. Figure 7.7 shows the definition of a function two_x_plus_y, which returns twice its first
parameter plus its second using this convention; two_x_plus_y is similar to updateR3 of Figure
7.4, in that it computes 2R1+R2, but it returns this value instead of adding it to R3.

Note that the burden of saving registers can complicate the code for making a function call;
instead of using the simple CALL and RETURN statements of Figure 7.4 and 7.5, we’ll need to
create space in the stack for any variables we’ll need to preserve, store the needed values there
before the call, and load them back into registers afterwards. Figure 7.8 shows this style of call
for a HERA program equivalent to x=5; printint(foo(x+5,2)-x); note that the value of x,
which was originally in R1, is saved to memory cell FP + 0 before the call to foo, and then
loaded back into R2 for the subtraction step. No such save/reload sequence is needed for the call
to printint, however, since x is not used after that point.

If a function makes many calls in exactly this way, it can end up moving the stack pointer up
and down, and saving and re-loading values more than is necessary. We avoid this wasted work
by allocating enough space when the function starts, and saving and loading only as needed.

Putting this all together, we adopt a convention in which we call a function with these steps:

• Save (into the stack frame) any registers we may need after the call and whose values have
not yet been saved

• Put the parameter values into registers R1, R2, ...

• Copy the current stack pointer into R12, i.e., via MOVE(R12, SP), unless a prior call did so

• Actually call the function, via CALL(R12, label-for-start-of-function)

• After the call, the returned value can be retrieved from R1

• Load (from the stack frame) any of the saved registers that we need before the next call.

// Translation of a high-level-language function two_x_plus_y:

// int two_x_plus_y(x : int, y : int) : int = x+x+y

// assuming parameters/return in registers, no static link, caller-save of reg.,

// (as before single precision, assuming CB set)

LABEL(two_x_plus_y)

// Don’t bother saving Rt since it won’t be changed

// (no "NOT", assembler-generated register mode branches, etc)

ADD(r1, r1,r1) // result = 2*x

ADD(r1, r1,r2) // result = 2*x+y

RETURN(FP_alt, PC_ret)

Figure 7.7. Function two_x_plus_y
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To define a function to be called with these conventions, we use these steps:

• If necessary, increment SP enough to make space for saving registers during the function
(for functions of any significant length, it may be useful to document, with a comment,
what will go at each memory cell in the frame, i.e., what’s at FP +0, at FP +1, etc.).

• If necessary, save the return address (from R13) and dynamic link (from R12) in the frame

• Give the function body (in which parameters are assumed to be in R1, R2, ...)

• Put the function’s return value into R1

• If necessary, load the return address (into R13) and dynamic link (into R12) from the
frame

• If necessary, decrement SP to restore its value prior to the function

• Return from the function, via RETURN(R12, R13).

Figure 7.9 shows the use of these conventions to define a function foo, which calls two_x_plus_y.
Figure 7.10 shows the memory layout of the stack frames for this program, with the values that
are there during the execution of two_x_plus_y.

This set of conventions is appealing for simple programs like those shown here, but must be
extended carefully for programs in which some functions have more than 11 parameters, or for
languages in which one function definition can be nested within another and the inner function
can access the variables of the outer (as in Figure 7.2). Such functions can be handled using the
techniques of the next section, or a carefully crafted hybrid of these two approaches.

// Example program x=5; printint(foo(x+5, 2)-x)

CBON()

// Assume we start with a size-zero stack frame, i.e., SP=FP

SET(r1, 5) // use r1 for x, set x=5

// call foo(x+5, 2) ... start by saving x, which we’ll need later

INC(SP, 1) // SP is now 1 above FP; we have a 1-cell frame

STORE(r1, 0,FP) // Save x at offset 0 in our frame

INC(r1, 5) // r1 (first parameter) is now X+5

SET(r2, 2) // r2 (second parameter) is 2

MOVE(FP_alt, SP) // New frame (for foo) should be current SP

CALL(FP_alt, foo) // call foo, use FP_alt to indicate new FP

LOAD(r2, 0,FP) // get x back into r2; note r1 is result of foo

DEC(SP, 1) // clean up stack, since we’re done with it

SUB(r1, r1,r2) // find result of foo - x, i.e. r1-r2

CALL(FP_alt, printint) // print the result

HALT()

Figure 7.8. Calls to foo and printint, with Parameters in Registers
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// Translation of foo, assuming parameters in registers etc.

// int foo(a : int, b : int) : int = two_x_plus_y(a+b, b-a+75) * a

LABEL(foo) // Assumes carry-block is set

// FIRST, make space to save R.A., old FP, and "a", then save them

INC(SP, 3)

STORE(PC_ret, 0,FP) // Save R.A.

STORE(FP_alt, 1,FP) // Save old F.P. ("control link")

STORE(r1, 2,FP) // Save "a" in current frame (only re-save if changed)

// copy "a" and "b" out of r1 and r2 so that we can use r1 and r2 in next call:

MOVE(r10, r1)

MOVE(r11, r2)

// set up parameters for call to two_x_plus_y

ADD(r1, r10,r11) // r1 = a+b

SUB(r2, r11,r10) // r2 = b-a

SETLO(r9, 75)

ADD(r2, r2,r9) // r2 = b-a+75

// actually make the call, with two_x_plus_y’s parameters in r1 and r2

MOVE(FP_alt, SP) // initial stack frame for called function has size 0

CALL(FP_alt,two_x_plus_y)

// Now restore "a" and multiply result of call (now in r1) by it:

LOAD(r2, 2,FP)

MUL(r1, r1,r2)

// Finally, restore R.A. and old F.P., do the return (result is already in r1)

LOAD(PC_ret, 0,FP)

LOAD(FP_alt, 1,FP)

DEC(SP, 3)

RETURN(FP_alt, PC_ret)

Figure 7.9. Calling two_x_plus_y with Parameters in Registers

(↑Higher addresses)
←−4 (two_x_plus_y’s FP=foo’s SP ) size zero frame for two_x_plus_y

10 foo’s variable a
0 foo’s C.L. (saved FP of main)
??? (P.C. in main) ←−1 (foo’s FP=main’s SP=1) foo’s R.A. (P.C. in main)

5 ←−0 (main’s FP=0) value of X

Figure 7.10. Active Stack Frames During Execution of two_x_plus_y From Figure 7.8’s Main Program
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7.5 Parameters on the Stack, “Callee-Save” Registers

The previous section’s use of registers for function parameters does not work well for functions
with very large numbers of parameters, or when functions refer to variables from outer scopes (as
with the variable a of two_a_plus_y in Figure 7.2). The caller-save approach to registers simpli-
fies function bodies, at the expense of complexity for function calls. Either of these conventions
can be varied; this section illustrates the use of the stack frame for parameters and a callee-save
approach to preserving register values, and follows the convention that the first three elements of
each frame are reserved for the links, as in Figures 7.3 and Figure 7.6. The callee-save approach
moves the burden of saving register values from the calling function to the called function, which
need only save the registers it will change (except for Rt, by convention). Other combinations of
parameter-passing mechanism and register preservation are possible, as are hybrids of these
approaches.

Figure 7.11 shows a version of our two_x_plus_y example with the “parameters on the stack,
callee-save of registers” conventions. Since it has two parameters, it should be called with a stack
frame of size five that contains the values of x and y (in memory cells FP + 3 and FP + 4,
respectively). The two ADD steps in the middle of Figure 7.11 are analogous to the ADDs of Figure
7.7. Since the parameters and return value are passed in the stack, the additions are preceded by

// Translation of a high-level-language function two_x_plus_y:

// int two_x_plus_y(x : int, y : int) : int = x+x+y

LABEL(two_x_plus_y)

// FIRST, make space to save r1 and r2 and then save PC_ret, FP_alt, and them

INC(SP, 2)

STORE(PC_ret, 0,FP) // Return address, i.e. PC+1 from before CALL

STORE(FP_alt, 1,FP) // Control Link, i.e. FP from before the CALL

STORE(r1, 5,FP) // skip FP+3 and FP+4, where a and b will be...

STORE(r2, 6,FP) // ... and save r1 and r2 in FP+5/FP+6

// Load "x" and "y" from stack frame (calling func. put them there)

LOAD(r1, 3,FP) // r1 = x

LOAD(r2, 4,FP) // r2 = y

// Compute the result

ADD(r1, r1,r1) // r1 = x+x

ADD(r1, r1,r2) // r1 = x+x+y

// Store the result where the caller of two_x_plus_y will find it

STORE(r1, 3,FP)

// FINALLY, restore registers (including PC_ret and FP_alt) and return

LOAD(r2, 6,FP) // Restore r2

LOAD(r1, 5,FP) // Restore r1

LOAD(PC_ret, 0,FP) // Restore PC_ret to provide R.A. for return

LOAD(FP_alt, 1,FP) // Restore FP_alt (D.L.) to provide old FP for return

DEC(SP, 2)

RETURN(FP_alt, PC_ret)

Figure 7.11. A Function that Retrieves Parameters from the Stack and Preserves Register Values
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LOAD instructions to retrieve x and y from the stack frame, and followed by a STORE to put the
return value into the stack frame (where the first parameter had been). To respect the callee-save
approach to register values, two_x_plus_y stores the values of R1 and R2 in the frame at the
start of the function and loads them back at the end; the INC(SP, 2) and DEC(SP, 2) lines
increase the stack size at the start and restore it at the end. This function also saves and restores
FP_alt and PC_ret, though this is not necessary in this particular function since it does not
change these registers (some programmers choose to include these sometimes-unnecessary steps in
every function as a form of “defensive programming”, to avoid having to debug code in which they
had been inappropriately omitted).

Figure 7.12 provides examples of calling functions with these conventions; like Figure 7.8, it is
a HERA equivalent of x=5; printint(foo(x+5,2)-x). Unlike Figure 7.8, it can rely on R1’s
value is unchanged during foo, thanks to the callee-save convention. Note the steps involved in
establishing the proper size stack frame, storing parameter values, and retrieving the return
value.

// Example main program: x=5; printint(foo(x+5, 2)-x)

CBON()

// Assume we start with a size-zero stack frame, i.e., SP=FP

SET(r1, 5) // use r1 for x, set x=5

// call foo(x+5, 2)

MOVE(FP_alt, SP) // New frame (for foo) should be current SP

INC(SP, 5) // foo has 2 pameteters, start with stack size 5

MOVE(R2, R1) // R2 is x, we’ll increment it to x+5

INC(R2, 5)

STORE(R2, 3,FP_alt) // parameter 1 = x+5

SET(r2, 2)

STORE(r2, 4,FP_alt) // parameter 2 = 2

CALL(FP_alt, foo)

LOAD(R2, 3,FP_alt) // retrieve returned value into R2

DEC(SP, 5) // free up memory from foo’s frame

// call printint(foo’s result - x)

SUB(R2, R2,R1) // R2-R1 is foo’s return - x, i.e., foo(x+5,2)-x

INC(SP, 4) // printint has 1 parameter, start with stack size 4

STORE(R2, 3,FP_alt) // put printint’s parameter in place

CALL(FP_alt, printint) // print the result

DEC(SP, 4)

HALT()

Figure 7.12. Main Program to Call a Function foo, Passing Parameters on the Stack
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To call a function that uses this convention, we:

• Set FP_alt←SP and increment SP to allocate initial stack frame (size 3 + #parameters)

• Put the parameters on the stack above 3 spaces for links (i.e., starting at FP_alt +3)

• Set up the static link, if one is needed (see discussion later in this section)

• Issue the CALL instruction

• After the call, the return value can be retrieved from FP_alt+3, and SP decremented.

To define a function to be called with these conventions, we use these steps, as needed:

• Increment SP to make space for local storage

• Save registers, including PC_ret (return address) and FP_alt (dynamic link)

• Give the function body (in which parameters come from the stack frame, e.g. FP +3)

• Store the return value at FP +3

• Restore saved registers, including FP_alt and PC_ret, and decrement SP

• RETURN from the function

Thus, when one function calls another using these conventions, the caller creates the initial frame
for the called function within the top of its own frame, as illustrated by the shaded region of
Figure 7.13 (for a call to a k-parameter function from an n-parameter function that uses m

memory cells for storage within the function, e.g. for local variables or saved registers). The
shaded region becomes the initial frame for the called function as the CALL instruction exchanges
FP and FP_alt (the frame for the called function may then grow as the function runs).

(↑Higher addresses)
←−SP Next free memory cell, local storage will be allocated here

Parameter k for function to be called
... ...

Parameter 2 for function to be called
Parameter 1/Return Value for function to be called
(space for S.L. of function to be called, if S.L. used)
(space for D.L. of function to be called)

←−FP_alt (space for R.A. of function to be called)
Local Storage m

... ...
Local Storage 1
Parameter n
Parameter n− 1

... ...
Parameter 2
Parameter 1/Return Value
Static Link (“S.L.”), if used
Dynamic Link (“D.L.”), i.e., old FP saved from new Ra

←−FP Return Address (“R.A.”), saved from new Rb

(↓Lower addresses)

Figure 7.13. Typical Stack Frame with Parameters and Return Value on Stack, Just Before a CALL
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// Translation of foo (single precision, assuming CB set)

// int foo(a : int, b : int) : int = two_x_plus_y(a+b, b-a+75) * a

LABEL(foo)

// FIRST, make space to save r1 and r2 and then save PC_ret, FP_alt, and them

INC(SP, 2)

STORE(PC_ret, 0,FP) // Return address

STORE(FP_alt, 1,FP) // Control Link

STORE(r1, 5,FP) // skip FP+3 and FP+4, where a and b will be

STORE(r2, 6,FP)

// THEN the body of foo: compute two_x_plus_y(a+b, b-a+75) * a

// For the call, create space for 3 links and 2 parameters,

// remembering old SP in FP_alt:

MOVE(FP_alt, SP)

INC(SP, 5)

// and set up parameters a+b and b-a+75

LOAD(r1, 3,FP) // R1 = a (from memory cell FP+3)

LOAD(r2, 4,FP) // R2 = b

ADD(Rt, r1,r2) // Rt = a+b

STORE(Rt, 3,FP_alt) // 1st parameter at FP_alt+3, i.e. CALLED FUNC’S FP+3

SUB(r2, r2,r1) // R2 = b-a

SETLO(Rt, 75)

ADD(r2, r2,Rt) // R2 = b-a+75

STORE(r2, 4,FP_alt) // establish 2nd parameter at FP_alt+4

// and do the call

CALL(FP_alt, two_x_plus_y)

// AFTER the call, retrieve result and multiply by "a"

LOAD(r2, 3,FP_alt) // R2 = result retured FROM CALLED FUNC’S FRAME

// now that we have the returned value, we can shrink the stack back down:

DEC(SP, 5) // could use MOVE(SP, FP_alt)

// NOTE that r1 is still "a" from before the call:

MUL(r1, r2,r1)

// Save the result where the caller of ’foo’ will find it

STORE(r1, 3,FP) // Put return value over 1st parameter

// FINALLY, restore registers (including PC_ret and FP_alt) and return

LOAD(r2, 6,FP) // Restore r2

LOAD(r1, 5,FP) // Restore r1

LOAD(PC_ret, 0,FP) // Restore PC_ret to provide return address for return

LOAD(FP_alt, 1,FP) // Restore FP_alt (D.L.) to provide old FP for return

DEC(SP, 2)

RETURN(FP_alt, PC_ret)

Figure 7.14. Calling A Function, with Parameters on Stack
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Figure 7.14 shows the definition of a function foo that calls two_x_plus_y, as illustrated by
pseudo-code above the function. Since foo is a function that can be called, it includes the “to
define a function” steps above, as did Figure 7.11 (but, in this case, the save and restore of
FP_alt and PC_ret are necessary for the program to work). Since foo makes a call, it also
includes the “to call a function” steps, as did Figure 7.12. We could optimize Figure 7.14 by com-
bining the two increments of SP , and likewise combining the two decrements. This would
slightly shorten the function, possibly at the cost of some clarity.

The two_x_plus_y example above does not illustrate the actual use of a static link. Figures
7.15 and 7.16 show a HERA version of the functions foo and two_a_plus_y of Figure 7.2, in
which two_a_plus_y uses foo’s local variable a. The algorithms for setting up and using static
links are beyond the scope of this document, but a careful examinition of Figures 7.15 and 7.16
should illustrate how the static link is used in this example: the static link for two_a_plus_y is
established as the base address of foo’s frame, right before foo calls two_a_plus_y; this lets
two_a_plus_y find the value of a by retrieving foo’s frame pointer and then loading the variable
at offset 3.

Figure 7.17 shows a memory layout diagram of the stack during the execution of this pro-
gram, at the instant just before the DEC(SP,2) at the end of two_a_plus_y, assuming foo is
called by the code of Figure 7.12 and that this code is executed when the HERA microprocessor
starts up, with all registers (including FP and SP ) being 0, and thus with a zero-size stack frame
for the main program. (Memory cells with contents marked “*” are addresses of instructions in
the program—these can’t be determined without knowing how the code from the various figures
is laid out in the address space of the instruction memory).

// Translation of two_a_plus_y, using lexically scoped variable "a"

LABEL(two_a_plus_y)

INC(SP, 2)

STORE(PC_ret, 0,FP) // R.A.

STORE(FP_alt, 1,FP) // D.L.

STORE(r1, 4,FP) // Save r1 and r2 at FP+4 and FP+5,

STORE(r2, 5,FP) // because there is only one parameter (y)

// Load "a" from offset 3 of statically scoped frame

LOAD(r1, 2,FP) // get two_a_plus_y’s static link, i.e., foo’s FP

LOAD(r1, 3,r1) // r1 now is "a"

// Load "y" from two_a_plus_y’s stack frame (as in two_x_plus_y example)

LOAD(r2, 3,FP) // r2 = y, from current frame

ADD(r1, r1,r1) // Compute the result: r1 = a+a

ADD(r1, r1,r2) // r1 = a+a+y

STORE(r1, 3,FP) // Store the result

LOAD(r2, 5,FP) // Restore r2

LOAD(r1, 4,FP) // Restore r1

LOAD(PC_ret, 0,FP) // Restore PC_ret (R.A.)

LOAD(FP_alt, 1,FP) // Restore FP_alt (D.L.)

DEC(SP, 2)

RETURN(FP_alt, PC_ret)

Figure 7.15. Function two_a_plus_y, Illustrating the Use of the Static Link (see also Figure 7.16).
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// Translation of main function foo, setting up to use lexical scoping

// foo(a: int, b: int): int =

// let two_a_plus_y(y : int): int = a+a+y

// in two_a_plus_y(b-a+75) * a

// (once again, assuming single precision, and carry-block is set)

LABEL(foo)

// Standard preamble

INC(SP, 2)

STORE(PC_ret, 0,FP)

STORE(FP_alt, 1,FP)

STORE(r1, 5,FP)

STORE(r2, 6,FP)

// Allocate space for new frame, define ONE parameter "y"

MOVE(FP_alt, SP)

INC(SP, 4)

LOAD(r1, 3,FP) // R1 = a

LOAD(r2, 4,FP) // R2 = b

SUB(r2, r2,r1) // R2 = b-a

SETLO(Rt, 75)

ADD(r2, r2,Rt) // R1 = b-a+75

STORE(r2, 3,FP_alt)

// Build the static link for two_a_plus_y (points to foo’s frame),

STORE(FP, 2,FP_alt) // CREATE STATIC LINK FOR two_a_plus_y

CALL(FP_alt,two_a_plus_y)

LOAD(r2, 3,FP_alt) // Retrieve the result

DEC(SP, 4)

MUL(r1, r1,r2) // Multiply by "a"

STORE(r1, 3,FP) // Save result as return value

// Standard postable

LOAD(r2, 6,FP)

LOAD(r1, 5,FP)

LOAD(PC_ret, 0,FP)

LOAD(FP_alt, 1,FP)

DEC(SP, 2)

RETURN(FP_alt, PC_ret)

Figure 7.16. Function Calls with Parameters on Stack and an Escaping Local Variable
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(↑Higher addresses)
←−13 (two_x_plus_y’s SP ) Next free memory cell

67 two_a_plus_y’s saved R2

10 ←−11 (two_x_plus_y’s initialSP ) two_a_plus_y’s saved R1

91 (was 12) two_a_plus_y’s result (was x)
0 two_a_plus_y’s S.L. (foo’s FP )
0 two_a_plus_y’s D.L. (foo’s FP )
* ←−7 (two_x_plus_y’s FP ) two_a_plus_y’s R.A. (into foo)

0 foo’s saved R2

0 ←−5 (foo’s initial SP ) foo’s saved R1

10 foo’s parameter b
2 foo’s parameter a

foo’s S.L. (undefined)
0 foo’s D.L. (saved FP of main)
* ←−0 (foo’s FP=0) foo’s R.A. (into main)

Figure 7.17. Stack Layout for Figures 7.14, 7.11, and 7.12 Just Before DEC(SP, 2) in two_x_plus_y.
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7.6 Hybrid Conventions

Conventions for placement of parameters, saving of registers, choice of which registers to use, etc.,
can be combined in a variety of other ways. These choices must be made with respect to the pro-
gramming language being used and degree of analysis/optimization performed by the compiler or
programmer, as well as the target architecture.

The example code of Figure 7.5 uses the convention that the first three parameters are passed
in R1, R2, and R3; that R4...R7 must be preserved after a function’s execution (i.e., they must be
saved and restored by the called function if they are changed), but R8...R11 may be changed; and
that R12...R15 will, like R4....R7, be preserved after function’s execution. This makes R4....R7

suitable for long-term storage of variables, and R8....R11 suitable for short-lived temporaries.
For more information about ways of combining the these conventions, refer to a compiler

implementation textbook. Enthusiastic readers are invited to program the examples of this
chapter using the hybrid convention above.
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