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Admin

• Project meetings today in lab with all groups
– Try to come to the same lab as your group

• Midterm April 25 in class (this Thursday)
– Can still do handout videos for extra credit! Up to 24 hours before exam
– Create your own “study sheet” (front and back) to use during the exam
– No other notes or resources



Faculty Interview TODAY!
• The candidate joining us is Dakotah Lambert. Dakotah received their PHD 

from Stony Brook University in the Department of Linguistics and Institute for 
Advanced Computational Science, with a research focus on understanding 
communication structures between humans and computers using algebraic 
and logical analysis.

• Date: 23rd April 2024 (Today)
• Research talk: 4:30 pm onwards in H109. The research talk will be preceded 

by a tea at around 4:15 pm
• Title: Finite automata: interpretation and normal forms
• Abstract: In this lesson we will explore finite-state automata, a standard representation of abstract 

machines that implement regular expressions.  These are commonly used, perhaps with extensions, in 
compiler design, language modeling, and machine learning.  We will see how to read standard 
depictions of these abstract machines, to understand which languages they represent, and to 
determine whether two machines implement the same functionality.



Outline for April 23

• Review temperature, cross-entropy, loss functions, 

and ML pipeline

• Convolutional filters, backpropagation, and CNNs

• Gaussian mixture model handout

• Perceptron and SVM
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Review temperature in language generation
Handout 21, Q1

• Temperature = 1
– Scores (logits)
– Probabilities

• Temperature = 0.01 100 (corrected!)
– Scores (logits)
– Probabilities

• Temperature = 100 0.01 (corrected!)
– Scores (logits)
– Probabilities

[ -69.31472 ,  -91.629074, -230.25851 ]

[0.9999999, 2.0370382e-10, 1.26765211e-70]

[-0.00693147, -0.00916291, -0.02302585]

[0.33536728108, 0.3346197634, 0.3300129554]

[0.5, 0.4, 0.1]

[-0.6931472, -0.9162907, -2.3025851]



Temperature: don’t always pick the 
letter with maximum probability

Geron, Chap 16
Q: is tf.argmax different from temp=1?



Core Machine Learning Pipeline

1
2
3
4





Stochastic Gradient Descent (high-level)

set w = 0 vector
while cost J(w) still changing (or max iter reached):
 shuffle data points
 for i = 1…n:
  w <- w – alpha(derivative of J(w) wrt xi)
 store J(w)



Gradient descent variations
• Batch gradient descent
– Go over all training data before making a weight update

• Stochastic gradient descent
– Shuffle data and make a weight update after each 

training example

• Mini-batch gradient descent
– Update after a “mini-batch” of training examples (i.e. 50)
– Vocab word: epoch (one pass through the data)



3 important pieces to SGD
(with logistic regression concrete example)

• Hypothesis function (prediction)

• Cost/loss function (want to minimize)

• Gradient of cost wrt single data point xi





Outline for April 23

• Review temperature, cross-entropy, loss functions, 

and ML pipeline

• Convolutional filters, backpropagation, and CNNs

• Gaussian mixture model handout

• Perceptron and SVM

Handout 25, page 1 and 2!
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Output size formula in one dimension

• W = input width (same for height though, but not for depth!)
• F = filter size
• P = padding (on one side)
• S = strides



(a) Which steps require parameter learning? (out of 
CONV, RELU, POOL, FLATTEN, FC)

(b) First layer params

(c) Second layer params

(d) Third layer params

(e) Total # params

If we had a FC with p1=100 and p2=50, we would have 312,860 
params to learn (check this after class). CNN is much better!

CONV, FC

5*5*3*20 + 20 = 1520

3*3*20*10 + 10 = 1810

8*8*10*10 + 10 = 6410

9740

Handout 18
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Outline for April 23

• Review temperature, cross-entropy, loss functions, 

and ML pipeline

• Convolutional filters, backpropagation, and CNNs

• Gaussian mixture model handout

• Perceptron and SVM

Handout 25, page 3!
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Intuition behind the dot product

hyperplane:

Takeaway: we only care about the 
sign of the angle between x and w

• If cos θ > 0, x is on the same 
side of the hyperplane as w, so 
we classify it as positive

• If cos θ < 0, x is on the opposite 
side from w, so we classify it as 
negative



Perceptron algorithm and intuition

Image and Algorithm: modified from Eric Eaton
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Perceptron algorithm and intuition

Image and Algorithm: modified from Eric Eaton

Let 
Repeat until convergence:
 Receive training example
 If                                 (incorrectly classified) 

Often: alpha = 1 (only changes 
magnitude of weight vector)

Convergence:
• All data points 

correctly classified
• Fixed number of 

iterations passed



Functional and Geometric Margins
SVM classifier:
(same as perceptron)
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Functional and Geometric Margins
SVM classifier:
(same as perceptron)

Functional Margin:

Geometric Margin:
(distance between 
example and hyperplane)

Note:



Optimization Problem: try 1

Goal: maximize the minimum distance 
between example and hyperplane



Optimization Problem: try 1

Goal: maximize the minimum distance 
between example and hyperplane

Formulation: optimize a function with 
respect to a constraint

(force functional and geometric 
margin to be equal)



Optimization Problem: try 2

Idea: substitute functional margin 
divided by magnitude of weight vector

(gets rid of non-convex constraint)



Optimization Problem: try 3

Idea: put arbitrary constraint on 
functional margin



Optimization Problem: try 3

Idea: put arbitrary constraint on 
functional margin



Kernel Idea
• By solving the dual form of the problem, we have seen 

how all computations can be done in terms of inner 
products between examples

• One example of an inner product is the dot product, 
which is the linear version of SVMs

• But there are many others!

• Intuition: if points are close together, their kernel 
function will have a large value (measure of similarity)



Kernel Trick example

Image: Shiyu Ji (wikipedia)

Original feature space
Mapping after applying kernel 
(can now find a hyperplane)

Kernel function: K(x, z) = x•z + ||x||2 ||z||2

Feature mapping: φ(x) = (x1, x2,  x12 + x22)



Gaussian Kernel
• Gaussian kernel is near 0 when points are far 

apart and near 1 when they are similar
• Also called Radial Basis Function (RBF) kernel



Gaussian Kernel
• Gaussian kernel is near 0 when points are far 

apart and near 1 when they are similar
• Also called Radial Basis Function (RBF) kernel

Often re-parametrized by 
gamma



Soft-margin SVMs (non-separable case)

• Idea: we will use regularization to add a cost for each 
point being incorrectly classified by the hyperplane

• Hopefully many costs will be 0, but we can 
accommodate a few outliers

Figure: Andrew Ng



Soft-margin SVMs (non-separable case)

• New optimization problem with regularization

"flexible margin"



Meta-optimization process
• Incremental SVM optimization algorithm



Meta-optimization process
• Incremental SVM optimization algorithm

• Choose a subset S of examples and run 
optimization to get alpha values



Meta-optimization process
• Incremental SVM optimization algorithm

• Choose a subset S of examples and run 
optimization to get alpha values

• Identify which alpha values are 0 => these 
cannot be support vectors in final solution!



Meta-optimization process
• Incremental SVM optimization algorithm

• Choose a subset S of examples and run 
optimization to get alpha values

• Identify which alpha values are 0 => these 
cannot be support vectors in final solution!

• Discard these points and add new ones; repeat
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Meta-optimization: example
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Meta-optimization: example

K = 4
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Round 1:
* S = {x1, x2, x3, x4}
* Support vectors are: x1, x2, x4
* Alpha 0: x3 
* Hyperplane:



x1

x2

x1 x2

x4x5

Round 1:
* S = {x1, x2, x4, x5}
* Support vectors are: x4, x5
* Alpha 0: x1, x2 
* Hyperplane:



x1

x2

x4x5

x6

x7

Round 3:
* S = {x4, x5, x6, x7}
* Support vectors are: x4, x5, x7 
* Alpha 0: x6
* Hyperplane:



x1

x2

x4x5

x7

Round 4:
* S = {x4, x5, x7, x8}
* Support vectors are: x4, x5, x7 
* Alpha 0: x8
* Hyperplane:

x8



x1

x2

x4x5

x7

Round 5:
* S = {x4, x5, x7, x9}
* Support vectors are: x4, x7, x9 
* Alpha 0: x5
* Hyperplane:

x9



x1

x2

x4x5

x7

x9

x1 x2

x6 x8

x3

Handout 16, Final Solution
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Discuss with a partner: what are the support vectors?



x1

x2

x1

x2

x3

x5
x4

x6

Discuss with a partner: what are the support vectors?



w1 = 1 z = 3w1 – w2 + 2w3

1/zw2 = 5

w3 = 0


