
CS 360: Machine Learning

Sara Mathieson, Sorelle Friedler
Spring 2024

Admin

• Project meetings today in lab with all groups
– Try to come to the same lab as your group

• Midterm April 25 in class (this Thursday)
– Can still do handout videos for extra credit! Up to 24 hours before exam
– Create your own “study sheet” (front and back) to use during the exam
– No other notes or resources

Faculty Interview TODAY!
• The candidate joining us is Dakotah Lambert. Dakotah received their PHD

from Stony Brook University in the Department of Linguistics and Institute for
Advanced Computational Science, with a research focus on understanding
communication structures between humans and computers using algebraic
and logical analysis.

• Date: 23rd April 2024 (Today)
• Research talk: 4:30 pm onwards in H109. The research talk will be preceded

by a tea at around 4:15 pm
• Title: Finite automata: interpretation and normal forms
• Abstract: In this lesson we will explore finite-state automata, a standard representation of abstract

machines that implement regular expressions. These are commonly used, perhaps with extensions, in
compiler design, language modeling, and machine learning. We will see how to read standard
depictions of these abstract machines, to understand which languages they represent, and to
determine whether two machines implement the same functionality.

Outline for April 23

• Review temperature, cross-entropy, loss functions,

and ML pipeline

• Convolutional filters, backpropagation, and CNNs

• Gaussian mixture model handout

• Perceptron and SVM

Outline for April 23

• Review temperature, cross-entropy, loss functions,

and ML pipeline

• Convolutional filters, backpropagation, and CNNs

• Gaussian mixture model handout

• Perceptron and SVM

Review temperature in language generation
Handout 21, Q1

• Temperature = 1
– Scores (logits)
– Probabilities

• Temperature = 0.01 100 (corrected!)
– Scores (logits)
– Probabilities

• Temperature = 100 0.01 (corrected!)
– Scores (logits)
– Probabilities

[-69.31472 , -91.629074, -230.25851]

[0.9999999, 2.0370382e-10, 1.26765211e-70]

[-0.00693147, -0.00916291, -0.02302585]

[0.33536728108, 0.3346197634, 0.3300129554]

[0.5, 0.4, 0.1]

[-0.6931472, -0.9162907, -2.3025851]

Temperature: don’t always pick the
letter with maximum probability

Geron, Chap 16
Q: is tf.argmax different from temp=1?

Core Machine Learning Pipeline

1
2
3
4

Stochastic Gradient Descent (high-level)

set w = 0 vector
while cost J(w) still changing (or max iter reached):
 shuffle data points
 for i = 1…n:
 w <- w – alpha(derivative of J(w) wrt xi)
 store J(w)

Gradient descent variations
• Batch gradient descent
– Go over all training data before making a weight update

• Stochastic gradient descent
– Shuffle data and make a weight update after each

training example

• Mini-batch gradient descent
– Update after a “mini-batch” of training examples (i.e. 50)
– Vocab word: epoch (one pass through the data)

3 important pieces to SGD
(with logistic regression concrete example)

• Hypothesis function (prediction)

• Cost/loss function (want to minimize)

• Gradient of cost wrt single data point xi

Outline for April 23

• Review temperature, cross-entropy, loss functions,

and ML pipeline

• Convolutional filters, backpropagation, and CNNs

• Gaussian mixture model handout

• Perceptron and SVM

Handout 25, page 1 and 2!

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Output size formula in one dimension

• W = input width (same for height though, but not for depth!)
• F = filter size
• P = padding (on one side)
• S = strides

(a) Which steps require parameter learning? (out of
CONV, RELU, POOL, FLATTEN, FC)

(b) First layer params

(c) Second layer params

(d) Third layer params

(e) Total # params

If we had a FC with p1=100 and p2=50, we would have 312,860
params to learn (check this after class). CNN is much better!

CONV, FC

5*5*3*20 + 20 = 1520

3*3*20*10 + 10 = 1810

8*8*10*10 + 10 = 6410

9740

Handout 18

Outline for April 23

• Review temperature, cross-entropy, loss functions,

and ML pipeline

• Convolutional filters, backpropagation, and CNNs

• Gaussian mixture model handout

• Perceptron and SVM
Handout 24

Outline for April 23

• Review temperature, cross-entropy, loss functions,

and ML pipeline

• Convolutional filters, backpropagation, and CNNs

• Gaussian mixture model handout

• Perceptron and SVM

Handout 25, page 3!

Intuition behind the dot product

hyperplane:

Intuition behind the dot product

hyperplane:

Intuition behind the dot product

hyperplane:

Intuition behind the dot product

hyperplane:

Takeaway: we only care about the
sign of the angle between x and w

• If cos θ > 0, x is on the same
side of the hyperplane as w, so
we classify it as positive

• If cos θ < 0, x is on the opposite
side from w, so we classify it as
negative

Perceptron algorithm and intuition

Image and Algorithm: modified from Eric Eaton

Perceptron algorithm and intuition

Image and Algorithm: modified from Eric Eaton

Let
Repeat until convergence:
 Receive training example
 If (incorrectly classified)

Perceptron algorithm and intuition

Image and Algorithm: modified from Eric Eaton

Let
Repeat until convergence:
 Receive training example
 If (incorrectly classified)

Often: alpha = 1 (only changes
magnitude of weight vector)

Convergence:
• All data points

correctly classified
• Fixed number of

iterations passed

Functional and Geometric Margins
SVM classifier:
(same as perceptron)

Functional and Geometric Margins
SVM classifier:
(same as perceptron)

Functional Margin:

Functional and Geometric Margins
SVM classifier:
(same as perceptron)

Functional Margin:

Geometric Margin:
(distance between
example and hyperplane)

Functional and Geometric Margins
SVM classifier:
(same as perceptron)

Functional Margin:

Geometric Margin:
(distance between
example and hyperplane)

Note:

Optimization Problem: try 1

Goal: maximize the minimum distance
between example and hyperplane

Optimization Problem: try 1

Goal: maximize the minimum distance
between example and hyperplane

Formulation: optimize a function with
respect to a constraint

(force functional and geometric
margin to be equal)

Optimization Problem: try 2

Idea: substitute functional margin
divided by magnitude of weight vector

(gets rid of non-convex constraint)

Optimization Problem: try 3

Idea: put arbitrary constraint on
functional margin

Optimization Problem: try 3

Idea: put arbitrary constraint on
functional margin

Kernel Idea
• By solving the dual form of the problem, we have seen

how all computations can be done in terms of inner
products between examples

• One example of an inner product is the dot product,
which is the linear version of SVMs

• But there are many others!

• Intuition: if points are close together, their kernel
function will have a large value (measure of similarity)

Kernel Trick example

Image: Shiyu Ji (wikipedia)

Original feature space
Mapping after applying kernel
(can now find a hyperplane)

Kernel function: K(x, z) = x•z + ||x||2 ||z||2

Feature mapping: φ(x) = (x1, x2, x12 + x22)

Gaussian Kernel
• Gaussian kernel is near 0 when points are far

apart and near 1 when they are similar
• Also called Radial Basis Function (RBF) kernel

Gaussian Kernel
• Gaussian kernel is near 0 when points are far

apart and near 1 when they are similar
• Also called Radial Basis Function (RBF) kernel

Often re-parametrized by
gamma

Soft-margin SVMs (non-separable case)

• Idea: we will use regularization to add a cost for each
point being incorrectly classified by the hyperplane

• Hopefully many costs will be 0, but we can
accommodate a few outliers

Figure: Andrew Ng

Soft-margin SVMs (non-separable case)

• New optimization problem with regularization

"flexible margin"

Meta-optimization process
• Incremental SVM optimization algorithm

Meta-optimization process
• Incremental SVM optimization algorithm

• Choose a subset S of examples and run
optimization to get alpha values

Meta-optimization process
• Incremental SVM optimization algorithm

• Choose a subset S of examples and run
optimization to get alpha values

• Identify which alpha values are 0 => these
cannot be support vectors in final solution!

Meta-optimization process
• Incremental SVM optimization algorithm

• Choose a subset S of examples and run
optimization to get alpha values

• Identify which alpha values are 0 => these
cannot be support vectors in final solution!

• Discard these points and add new ones; repeat

x1

x2

x1 x2

x3

x5 x4

x6 x8

x7

x9

Meta-optimization: example

x1

x2

x1 x2

x3

x5 x4

x6 x8

x7

x9

Meta-optimization: example

K = 4

x1

x2

x1 x2

x3

x4

Round 1:
* S = {x1, x2, x3, x4}
* Support vectors are: x1, x2, x4
* Alpha 0: x3
* Hyperplane:

x1

x2

x1 x2

x4x5

Round 1:
* S = {x1, x2, x4, x5}
* Support vectors are: x4, x5
* Alpha 0: x1, x2
* Hyperplane:

x1

x2

x4x5

x6

x7

Round 3:
* S = {x4, x5, x6, x7}
* Support vectors are: x4, x5, x7
* Alpha 0: x6
* Hyperplane:

x1

x2

x4x5

x7

Round 4:
* S = {x4, x5, x7, x8}
* Support vectors are: x4, x5, x7
* Alpha 0: x8
* Hyperplane:

x8

x1

x2

x4x5

x7

Round 5:
* S = {x4, x5, x7, x9}
* Support vectors are: x4, x7, x9
* Alpha 0: x5
* Hyperplane:

x9

x1

x2

x4x5

x7

x9

x1 x2

x6 x8

x3

Handout 16, Final Solution

x1

x2

x1

x2

x3

x5
x4

x6

Discuss with a partner: what are the support vectors?

x1

x2

x1

x2

x3

x5
x4

x6

Discuss with a partner: what are the support vectors?

w1 = 1 z = 3w1 – w2 + 2w3

1/zw2 = 5

w3 = 0

