The second midterm covers in-class material days 14-24, labs 6-8, reading weeks 6-12, and material that carries over from the first midterm (see sections 1 and 2 from study guide 1 + implementation). It is in class and closed notes/books/internet/other, but you may use a 1 page (front and back), hand-written "resource sheet" (created by *you*). You will not need a calculator. I have put vocab in blue.

- 1. <u>From before</u>: softmax, cross-entropy and other loss functions, gradient descent, confusion matrices
- 2. Sources of Error in and ML pipeline
 - Traditional measures of error focus on prediction vs. label
 - What other sources of error are there throughout the pipeline?
 - AI Bill of Rights (see materials from Day 14)
- 3. Perceptron and Support Vector Machines
 - Idea and equation of a separating hyperplane (weight vector points toward the + side)
 - Perceptron algorithm and derivation of the weight updates; perceptron cost function
 - Perceptron weight updates: geometric interpretation and gradient descent interpretation
 - Guarantees and limitations of the perceptron algorithm
 - Support Vector Machines (SVMs) can find the maximum margin hyperplane
 - What are support vectors? What is the geometric (γ) vs. the functional $(\hat{\gamma})$ margin?
 - How we used the functional and geometric margins to cast SVMs as an optimization problem
 - Motivation and method of Lagrange multipliers, application to SVMs
 - High-level steps of transforming the SVM Lagrangian into a problem involving only α values
 - What do these α values represent and how can we use them to find \vec{w}^* ?
 - Reformulation of SVMs as maximizing $W(\vec{\alpha})$ uses only inner products between examples
 - Idea of a kernel function and how it can replace the dot product (not Gaussian kernel details)
- 4. Neural Networks: fully-connected and CNN
 - What is a Neural Network (NN)? Motivation and goals when using them
 - High level idea of training using gradient descent on the loss function
 - Fully Connected architectures, dimensionality analysis, parameters vs. hyperparameters
 - Choice of activation function, pros and cons of sigmoid, tanh, and ReLU
 - Softmax function as the activation function for the last layer, cross-entropy loss after that
 - Training: how to initialize the weights/biases, what is the point of mini-batches?
 - Motivation behind Convolutional Neural Networks (CNNs); application to images
 - CNN architectures: idea of 3D volumes, typical steps CONV, RELU, POOL, FC
 - CONV layer details: filters computing cross-correlations, slide filter over width and height
 - Dimensionality analysis (shapes of filter weights/biases, shapes of input/output)
 - Backpropagation: both high-level purpose and mathematical details
 - Skip: dropout, regularization, any pooling besides 2×2 with stride 2

- 5. Neural Networks: RNNS, Transformers, and GANs
 - Idea of recurrent neural networks (RNNs), purpose, input/output format, flexibility
 - RNN variations: LSTMs, GRUs (ability to remember relevant information)
 - Details of how we used RNNs for text generation in Lab 8, including data preprocessing
 - Risks of large language models (LLMs)
 - Text generation from vocab probabilities, idea of temperature to control randomness
 - Math and intuition behind attention mechanisms
 - Big-picture ideas of transformers and how they use attention mechanisms
 - Transformers are permutation-invariant but we can add positional encodings
 - Generative Adversarial Networks (GANs) as another way to generate synthetic data
 - GANs are comprised of two networks: generator and discriminator
 - GAN loss functions and relationship to binary cross-entropy loss; training difficulties
 - For image creation, GAN generator is usually a CNN with transposed convolutions

6. Interpretability

- Global vs. local interpretability
- LIME interpretability method
- Saliency maps
- Model-of-the-model approaches

7. Unsupervised Learning

- Basics of K-means and Gaussian mixture models (GMMs)
- Autoencoders and variational autoencoders (VAEs)
- Connection between unsupervised learning and generative methods