CS 360: Machine Learning

Sara Mathieson, Sorelle Friedler Spring 2024

Admin

• Lab 7 due TODAY!

Sorelle/Sara office hours today 4-5pm (H110)

- Project proposal due Monday
 - Email me by *Friday at midnight* for a random partner

Outline for April 4

• Finish Backpropagation

• Recurrent neural networks

• Attention mechanisms

• Applications

Transformers

Outline for April 4

• Finish Backpropagation

Recurrent neural networks

• Attention mechanisms

• Applications

• Transformers

Forward pass: compute values

Forward pass: compute values

Forward pass: compute values

Backward pass: compute local gradients

Backward pass: compute local gradients

Now if we wanted to minimize f => opposite direction of gradient

Now if we wanted to minimize f => opposite direction of gradient

Option 1: sigmoid function

• Input: all real numbers, output: [0, 1]

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Derivative is convenient

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Option 2: hyperbolic tangent

• Input: all real numbers, output: [-1, 1]

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Option 3: Rectified Linear Unit (ReLU)

• Return x if x is positive (i.e. threshold at 0)

$$f(x) = \max(0, x)$$

Pros and Cons of Activation Functions

1) Sigmoid

- (-) When input becomes very positive or very negative, gradient approaches 0 (saturates and stops gradient descent)
- (-) Not zero-centered, so gradient on weights can end up all positive or all negative (zig-zag in gradient descent)
- (+) Derivative is easy to compute given function value!

2) Tanh

- (-) Still has a tendency to prematurely kill the gradient
- (+) Zero-centered so we get a range of gradients
- (+) Rescaling of sigmoid function so derivative is also not too difficult

3) ReLU

- (+) Works well in practice (accelerates convergence)
- (+) Function value very easy to compute! (no exponentials)
- (-) Units can "die" (no signal) if input becomes too negative throughout gradient descent

Outline for April 4

• Finish Backpropagation

• Recurrent neural networks

• Attention mechanisms

• Applications

• Transformers

Recurrent Neural Networks (RNNS) input $Y = [Y_{(0)}, Y_{(1)}]$ ontput comb length (\mathbf{t})

irvet + $X_1 = 5$ Dias 7= $X_{(t)} = (n, p)$ 7 A Ŷ(+) (t)(h)1 Wxx common inputs to next time step P, P.) W_ŷ = (P, P)

Recurrent neural networks

Figure 15-1. A recurrent neuron (left) unrolled through time (right)

Geron, Chap 15

Recurrent neural networks

Figure 15-2. A layer of recurrent neurons (left) unrolled through time (right)

Geron, Chap 15

Sequence-to-sequence

- Example: predict power consumption
 - Input: power for N days
 - <u>Output</u>: power for N days shifted one day into the future

Sequence-to-vector

- Example: sentiment analysis
 - <u>Input</u>: text of review/tweet/post etc
 - <u>Output</u>: ignore all outputs but the last one and convert to 0 (negative) or 1 (positive), i.e. binary classification

Vector-to-sequence

- Example: caption generation
 - <u>Input</u>: output from an image CNN (same at each "time")
 - **Output**: text caption for the image

- Encoder-decoder
 - Example: machine translation (two sequence-tovector networks)
 - Input: sentences in one language
 - <u>Output</u>: sentences in another language

Training RNNs

- Still backpropagation!
- Dashed lines: forward pass to compute outputs
- Solid lines: backward pass to compute gradients
- Note: loss function does not need to depend on all outputs

Deep RNNs

Figure 15-10. A deep RNN (left) unrolled through time (right)

RNN training problems

- Weights are shared across time steps
- In backpropagation, weights changes might accumulate across the entire sequence!
- ReLU can make this worse (doesn't saturate)

- Additionally, RNNs can lose long-term memory over time
- Set up to focus more on short-term memory

LSTM: hold on to long-term memory

Figure 15-12. An LSTM cell

Traditional RNN example

Dhaval eats samosa almost everyday, it shouldn't be hard to guess that his favorite cuisine is Indian

GRU example

Dhaval eats samosa almost everyday, it shouldn't be hard to guess that his favorite cuisine is Indian

RNN-style machine translation

Figure 16-3. A simple machine translation model

Geron, Chap 16

Outline for April 4

• Finish Backpropagation

• Recurrent neural networks

• Attention mechanisms

• Applications

• Transformers

GitHub Copilot examples

Computing pairwise heterozygosity (biology summary statistic)

Risks of language models

- Reliability
- Social bias
- Toxicity
- Disinformation
- Security
- Legal considerations
- Cost and environmental impact
- Access

Discussion question: given these risks, should language models remain public?

Preprocessing for a language model

Figure 16-1. Preparing a dataset of shuffled windows

Geron, Chap 16

embedding 5 letter by letter input => to be $embedding = \sum [20,15,27,2,5] = X$ [15,27,2,5] = X

Word Embeddings

- If we have 50,000 words and one-hot encoding, doesn't scale! (Very sparse matrix)
- Instead: embed in a lower dimension space

Temperature: don't always pick the letter with maximum probability

>>> print(extend_text("To be or not to be", temperature=0.01))
To be or not to be the duke
as it is a proper strange death,
and the

>>> print(extend_text("To be or not to be", temperature=1))
To be or not to behold?

```
second push:
gremio, lord all, a sistermen,
```

>>> print(extend_text("To be or not to be", temperature=100))
To be or not to bef ,mt'&o3fpadm!\$
wh!nse?bws3est--vgerdjw?c-y-ewznq

Transformer Architecture

"Attention is all you need"

Attention mechanisms

$$lpha_i = rac{\exp\left(f_{attn}\left(\mathrm{key}_i,\mathrm{query}
ight)
ight)}{\sum_j \exp\left(f_{attn}\left(\mathrm{key}_j,\mathrm{query}
ight)
ight)}, \quad \mathrm{out} = \sum_i lpha_i \cdot \mathrm{value}_i$$

"Transformers and Multi-Head Attention" by Phillip Lippe