
CS 360: Machine Learning

Sara Mathieson, Sorelle Friedler
Spring 2024



Admin

• Lab 7 due TODAY!

• Sorelle/Sara office hours today 4-5pm (H110)

• Project proposal due Monday
– Email me by Friday at midnight for a random 

partner



Outline for April 4
• Finish Backpropagation

• Recurrent neural networks

• Attention mechanisms

• Applications

• Transformers



Outline for April 4
• Finish Backpropagation

• Recurrent neural networks

• Attention mechanisms

• Applications

• Transformers



Backpropagation: Example

Forward pass: compute values

Example from:
http://cs231n.github.io/optimization-2/

http://cs231n.github.io/optimization-2/


Backpropagation: Example

Forward pass: compute values

3

Example from:
http://cs231n.github.io/optimization-2/

http://cs231n.github.io/optimization-2/


Backpropagation: Example

Forward pass: compute values

3

-12

Example from:
http://cs231n.github.io/optimization-2/

http://cs231n.github.io/optimization-2/


Backpropagation: Example

Backward pass: compute local gradients

3

-12

Example from:
http://cs231n.github.io/optimization-2/

1

-4

3

http://cs231n.github.io/optimization-2/


Backpropagation: Example

Backward pass: compute local gradients

3

-12

Example from:
http://cs231n.github.io/optimization-2/

1

-4

3

-4

-4

http://cs231n.github.io/optimization-2/


Backpropagation: Example

Now if we wanted to minimize f => opposite direction of gradient

Example from:
http://cs231n.github.io/optimization-2/

-2-(0.1*-4)=-1.6

5-(0.1*-4)=5.4

-4-(0.1*3)=-4.3

http://cs231n.github.io/optimization-2/


Backpropagation: Example

Example from:
http://cs231n.github.io/optimization-2/

-16.34

f has decreased!

-2-(0.1*-4)=-1.6

5-(0.1*-4)=5.4

-4-(0.1*3)=-4.3

Now if we wanted to minimize f => opposite direction of gradient

http://cs231n.github.io/optimization-2/






Option 1: sigmoid function

• Input: all real numbers, output: [0, 1]

• Derivative is convenient



Option 2: hyperbolic tangent

• Input: all real numbers, output: [-1, 1]



Option 3: Rectified Linear Unit (ReLU)

• Return x if x is positive (i.e. threshold at 0)



Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

3) ReLU

More info:
http://cs231n.github.io/neural-networks-1/

• (-) When input becomes very positive or very negative, 
gradient approaches 0 (saturates and stops gradient descent)

• (-) Not zero-centered, so gradient on weights can end up all 
positive or all negative (zig-zag in gradient descent)

• (+) Derivative is easy to compute given function value!

• (-) Still has a tendency to prematurely kill the gradient
• (+) Zero-centered so we get a range of gradients
• (+) Rescaling of sigmoid function so derivative is also not too 

difficult

• (+) Works well in practice (accelerates convergence)
• (+) Function value very easy to compute! (no exponentials)
• (-) Units can “die” (no signal) if input becomes too negative 

throughout gradient descent

http://cs231n.github.io/neural-networks-1/


Outline for April 4
• Finish Backpropagation

• Recurrent neural networks

• Attention mechanisms

• Applications

• Transformers









Recurrent neural networks

Geron, Chap 15



Recurrent neural networks

Geron, Chap 15



RNNs are flexible
• Sequence-to-sequence
– Example: predict power consumption 
• Input: power for N days
• Output: power for N days shifted one day into the future

Geron, Chap 15



• Sequence-to-vector
– Example: sentiment analysis
• Input: text of review/tweet/post etc
• Output: ignore all outputs but the last one and convert 

to 0 (negative) or 1 (positive), i.e. binary classification

RNNs are flexible

Geron, Chap 15



• Vector-to-sequence
– Example: caption generation
• Input: output from an image CNN (same at each “time”)
• Output: text caption for the image

RNNs are flexible

Geron, Chap 15



• Encoder-decoder
– Example: machine translation (two sequence-to-

vector networks)
• Input: sentences in one language
• Output: sentences in another language

RNNs are flexible

Geron, Chap 15



Training RNNs
• Still backpropagation!
• Dashed lines: forward pass to compute outputs
• Solid lines: backward pass to compute gradients
• Note: loss function does not need to depend on all outputs 

Geron, Chap 15



Deep RNNs

Geron, Chap 15



RNN training problems

• Weights are shared across time steps
• In backpropagation, weights changes might 

accumulate across the entire sequence!
• ReLU can make this worse (doesn’t saturate)

• Additionally, RNNs can lose long-term memory 
over time

• Set up to focus more on short-term memory



LSTM: hold on to long-term memory

Geron, Chap 15



Gated Recurrent Unit (GRU)

Geron, Chap 15



Traditional RNN example

Deep Learning Tutorial 37: Codebasics



GRU example

Deep Learning Tutorial 37: Codebasics



RNN-style machine translation

Geron, Chap 16



Outline for April 4
• Finish Backpropagation

• Recurrent neural networks

• Attention mechanisms

• Applications

• Transformers



prompt

prompt

Computing pairwise 
heterozygosity (biology 

summary statistic)

GitHub Copilot examples 



Risks of language models
• Reliability
• Social bias
• Toxicity
• Disinformation
• Security
• Legal considerations
• Cost and environmental impact
• Access
Discussion question: given these risks, should 
language models remain public?

Percy Liang



Preprocessing for a language model

Geron, Chap 16





Word Embeddings
• If we have 50,000 words and one-hot 

encoding, doesn’t scale! (Very sparse matrix)
• Instead: embed in a lower dimension space 

Geron, Chap 13



Temperature: don’t always pick the 
letter with maximum probability

Geron, Chap 16



Transformer Architecture

“Attention is all you need”



Attention mechanisms

“Transformers and Multi-Head Attention” by Phillip Lippe


