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Admin

• Lab 7 check in today
– Should be finished with the fully connected network

• Project proposal due April 8 (short)

• I may receive a call



Outline for April 2

• Finish CNNs

• Neural network regularization

• Backpropagation
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Pooling

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/



Handout 18
(a) Which steps require parameter learning? (out of 

CONV, RELU, POOL, FLATTEN, FC)

(b) First layer params

(c) Second layer params

(d) Third layer params

(e) Total # params
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(a) Which steps require parameter learning? (out of 
CONV, RELU, POOL, FLATTEN, FC)

(b) First layer params

(c) Second layer params

(d) Third layer params

(e) Total # params

If we had a FC with p1=100 and p2=50, we would have 312,860 
params to learn (check this after class). CNN is much better!

CONV, FC

5*5*3*20 + 20 = 1520

3*3*20*10 + 10 = 1810

8*8*10*10 + 10 = 6410

9740

Handout 18



Handout 19, #1
(a) W=10, F=7, P=3, S=3

(b) Draw padding

(c) Shade units where cross-correlation is performed
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Image from Neural Network Zoo: http://www.asimovinstitute.org/neural-network-zoo/
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• Finish CNNs
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• Backpropagation



Weight initialization
• We still have to initialize the pre-training

• All 0’s initialization is bad! Causes nodes to 
compute the same outputs, so then the 
weights go through the same updates during 
gradient descent

• Need asymmetry!  => usually use small 
random values



More hidden units can contribute to overfitting

Image from: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/


However! It is always better to use a more 
expressive network and regularize in other ways

Image from: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/


• Idea: keep a neuron active with some probability p, 
otherwise, do not send its output forward to the next layer

One regularization approach: dropout

Image and more information: “Dropout: A Simple Way to Prevent 
Neural Networks from Overfitting” 

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
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Backpropagation
• High-level goal: we want to know how the 

output depends on the input
• Issue: network is very complicated and overall 

gradient may be difficult to compute
• Idea: use the chain rule to compute local 

gradients throughout the network
• Takeaway: nodes can know about their value 

and local gradient without knowing about the 
network they are imbedded in



Backpropagation: Example

Forward pass: compute values

Example from:
http://cs231n.github.io/optimization-2/
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Backpropagation: Example

Now if we wanted to minimize f => opposite direction of gradient

Example from:
http://cs231n.github.io/optimization-2/

-2-(0.1*-4)=-1.6

5-(0.1*-4)=5.4

-4-(0.1*3)=-4.3
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Backpropagation: Example

Example from:
http://cs231n.github.io/optimization-2/

-16.34

f has decreased!

-2-(0.1*-4)=-1.6

5-(0.1*-4)=5.4

-4-(0.1*3)=-4.3

Now if we wanted to minimize f => opposite direction of gradient

http://cs231n.github.io/optimization-2/











