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Admin

* Lab 7 check in today

— Should be finished with the fully connected network

* Project proposal due April 8 (short)

* | may receive a call



Outline for April 2

* Finish CNNs
* Neural network regularization

* Backpropagation



Outline for April 2

 Finish CNNs
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Pooling

224x224x64 : _
P Single depth slice
A
pool i 111|124
max pool with 2x2 filters
56|78 and stride 2 6|8
l 1 3 [ 2 . 3| 4
1| 2 S
> Mol 112
— downsampling
112 >
224 y

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. Left: In this example, the
input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the
volume depth is preserved. Right: The most common downsampling operation is max, giving rise to max pooling, here shown
with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).



Handout 18

(a) Which steps require parameter learning? (out of
CONV, RELU, POOL, FLATTEN, FC)

(b) First layer params
(c) Second layer params
(d) Third layer params

(e) Total # params
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Handout 18

(a) Which steps require parameter learning? (out of
CONV, RELU, POOL, FLATTEN, FC)

CONYV, FC
(b) First layer params 5*5*3*20 + 20 = 1520
(c) Second layer params 3*3*20*10 + 10 = 1810

(d) Third layer params 8*%8*10*10 + 10 = 6410

(e) Total # params 9740



Handout 18

(a) Which steps require parameter learning? (out of

CONV, RELU, POOL, FLATTEN, FC)
CONV, FC

(b) First layer params 5*5*3*20 + 20 = 1520
(c) Second layer params 3*3*20*10 + 10 = 1810
(d) Third layer params 8*%8*10*10 + 10 = 6410
(e) Total # params 9740

If we had a FC with p,=100 and p,=50, we would have 312,860
params to learn (check this after class). CNN is much better!



Handout 19, #1

(a) W=10, F=7, P=3, S=3

(b) Draw padding

(c) Shade units where cross-correlation is performed
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A mostly complete chart of

Neural Networks ........o
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K 5N
P

i i & N ’u»
0 :&';o :g;. R

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
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Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
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Image from Neural Network Zoo: http://www.asimovinstitute.org/neural-network-zoo/



Ve OO o0
R o

()
\

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
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Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
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Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SYM)  Neural Turing Machine (NTM)

P

Image from Neural Network Zoo: http://www.asimovinstitute.org/neural-network-zoo/



Outline for April 2

* Neural network regularization



Weight initialization

* We still have to initialize the pre-training

e All O’s initialization is bad! Causes nodes to
compute the same outputs, so then the

weights go through the same updates during
gradient descent

* Need asymmetry! => usually use small
random values



More hidden units can contribute to overfitting

3 hidden neurons 6 hidden neurons 20 hidden neurons

Larger Neural Networks can represent more complicated functions. The data are shown as circles colored by their class, and
the decision regions by a trained neural network are shown underneath. You can play with these examples in this ConvNetsJS
demo.

Image from: http://cs231n.github.io/neural-networks-1/



http://cs231n.github.io/neural-networks-1/

However! It is always better to use a more
expressive network and regularize in other ways

A =0.001 A =0.01 A=0.1

The effects of regularization strength: Each neural network above has 20 hidden neurons, but changing the regularization
strength makes its final decision regions smoother with a higher regularization. You can play with these examples in this
ConvNetsJS demo.

Image from: http://cs231n.github.io/neural-networks-1/



http://cs231n.github.io/neural-networks-1/

One regularization approach: dropout

* |dea: keep a neuron active with some probability p,

otherwise, do not send its output forward to the next layer
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(a) Standard Neural Net

(b) After applying dropout.

Image and more information: “Dropout: A Simple Way to Prevent
Neural Networks from Overfitting”
http://www.cs.toronto.edu/~rsalakhu/papers/srivastaval4a.pdf



http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Outline for April 2

* Backpropagation



Backpropagation

High-level goal: we want to know how the
output depends on the input

Issue: network is very complicated and overall
gradient may be difficult to compute

[dea: use the chain rule to compute local
gradients throughout the network

Takeaway: nodes can know about their value
and local gradient without knowing about the
network they are imbedded in



Backpropagation: Example

Forward pass: compute values

X -2

http://cs231n.github.io/optimization-2/
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Backpropagation: Example

Backward pass: compute local gradients
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http://cs231n.github.io/optimization-2/
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Backpropagation: Example

Backward pass: compute local gradients
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http://cs231n.github.io/optimization-2/
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Backpropagation: Example

Now if we wanted to minimize f => opposite direction of gradient

2-(0.1%-4)=-1.6

N

5-(0.1%-4)=5.4 |/

-4-(0.1%3)=-4.3

http://cs231n.github.io/optimization-2/
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Backpropagation: Example

Now if we wanted to minimize f => opposite direction of gradient

2-(0.1%-4)=-1.6

N

5-(0.1%-4)=5.4 |/

£ -16.34

*

-4-(0.1%3)=-4.3

f has decreased!

http://cs231n.github.io/optimization-2/
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