
CS 360: Machine Learning

Sara Mathieson, Sorelle Friedler
Spring 2024

Admin

• Lab 7 check in today
– Should be finished with the fully connected network

• Project proposal due April 8 (short)

• I may receive a call

Outline for April 2

• Finish CNNs

• Neural network regularization

• Backpropagation

Outline for April 2

• Finish CNNs

• Neural network regularization

• Backpropagation

Pooling

Image: Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/

Handout 18
(a) Which steps require parameter learning? (out of

CONV, RELU, POOL, FLATTEN, FC)

(b) First layer params

(c) Second layer params

(d) Third layer params

(e) Total # params

(a) Which steps require parameter learning? (out of
CONV, RELU, POOL, FLATTEN, FC)

(b) First layer params

(c) Second layer params

(d) Third layer params

(e) Total # params

CONV, FC

Handout 18

(a) Which steps require parameter learning? (out of
CONV, RELU, POOL, FLATTEN, FC)

(b) First layer params

(c) Second layer params

(d) Third layer params

(e) Total # params

CONV, FC

5*5*3*20 + 20 = 1520

3*3*20*10 + 10 = 1810

8*8*10*10 + 10 = 6410

9740

Handout 18

(a) Which steps require parameter learning? (out of
CONV, RELU, POOL, FLATTEN, FC)

(b) First layer params

(c) Second layer params

(d) Third layer params

(e) Total # params

If we had a FC with p1=100 and p2=50, we would have 312,860
params to learn (check this after class). CNN is much better!

CONV, FC

5*5*3*20 + 20 = 1520

3*3*20*10 + 10 = 1810

8*8*10*10 + 10 = 6410

9740

Handout 18

Handout 19, #1
(a) W=10, F=7, P=3, S=3

(b) Draw padding

(c) Shade units where cross-correlation is performed

(a) W=10, F=7, P=3, S=3

(b) Draw padding

(c) Shade units where cross-correlation is performed

(10-7+6)/3 + 1 = 4 (output size)

Handout 19, #1

(a) W=10, F=7, P=3, S=3

(b) Draw padding

(c) Shade units where cross-correlation is performed

(10-7+6)/3 + 1 = 4 (output size)

Handout 19, #1

(a) W=10, F=7, P=3, S=3

(b) Draw padding

(c) Shade units where cross-correlation is performed

(10-7+6)/3 + 1 = 4 (output size)

Handout 19, #1

(a) W=10, F=7, P=3, S=3

(b) Draw padding

(c) Shade units where cross-correlation is performed

(10-7+6)/3 + 1 = 4 (output size)

Handout 19, #1

(a) W=10, F=7, P=3, S=3

(b) Draw padding

(c) Shade units where cross-correlation is performed

(10-7+6)/3 + 1 = 4 (output size)

Handout 19, #1

(a) W=10, F=7, P=3, S=3

(b) Draw padding

(c) Shade units where cross-correlation is performed

(10-7+6)/3 + 1 = 4 (output size)

Handout 19, #1

Image from Neural Network Zoo: http://www.asimovinstitute.org/neural-network-zoo/

Image from Neural Network Zoo: http://www.asimovinstitute.org/neural-network-zoo/

Outline for April 2

• Finish CNNs

• Neural network regularization

• Backpropagation

Weight initialization
• We still have to initialize the pre-training

• All 0’s initialization is bad! Causes nodes to
compute the same outputs, so then the
weights go through the same updates during
gradient descent

• Need asymmetry! => usually use small
random values

More hidden units can contribute to overfitting

Image from: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

However! It is always better to use a more
expressive network and regularize in other ways

Image from: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

• Idea: keep a neuron active with some probability p,
otherwise, do not send its output forward to the next layer

One regularization approach: dropout

Image and more information: “Dropout: A Simple Way to Prevent
Neural Networks from Overfitting”

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Outline for April 2

• Finish CNNs

• Neural network regularization

• Backpropagation

Backpropagation
• High-level goal: we want to know how the

output depends on the input
• Issue: network is very complicated and overall

gradient may be difficult to compute
• Idea: use the chain rule to compute local

gradients throughout the network
• Takeaway: nodes can know about their value

and local gradient without knowing about the
network they are imbedded in

Backpropagation: Example

Forward pass: compute values

Example from:
http://cs231n.github.io/optimization-2/

http://cs231n.github.io/optimization-2/

Backpropagation: Example

Forward pass: compute values

3

Example from:
http://cs231n.github.io/optimization-2/

http://cs231n.github.io/optimization-2/

Backpropagation: Example

Forward pass: compute values

3

-12

Example from:
http://cs231n.github.io/optimization-2/

http://cs231n.github.io/optimization-2/

Backpropagation: Example

Backward pass: compute local gradients

3

-12

Example from:
http://cs231n.github.io/optimization-2/

1

-4

3

http://cs231n.github.io/optimization-2/

Backpropagation: Example

Backward pass: compute local gradients

3

-12

Example from:
http://cs231n.github.io/optimization-2/

1

-4

3

-4

-4

http://cs231n.github.io/optimization-2/

Backpropagation: Example

Now if we wanted to minimize f => opposite direction of gradient

Example from:
http://cs231n.github.io/optimization-2/

-2-(0.1*-4)=-1.6

5-(0.1*-4)=5.4

-4-(0.1*3)=-4.3

http://cs231n.github.io/optimization-2/

Backpropagation: Example

Example from:
http://cs231n.github.io/optimization-2/

-16.34

f has decreased!

-2-(0.1*-4)=-1.6

5-(0.1*-4)=5.4

-4-(0.1*3)=-4.3

Now if we wanted to minimize f => opposite direction of gradient

http://cs231n.github.io/optimization-2/

