
CS 360: Machine Learning

Sara Mathieson, Sorelle Friedler
Spring 2024



Admin
• Lab 4 and Lab 5 graded
– Any regrade requests (including midterm) must be 

brought within 1 week of receiving your grade

• Lab 6 was due last night (see Piazza for 
runtime issues if you’re taking a late day)

• Lab 7 posted, due Thurs April 4
– Last lab with required partners
– We can form partners during lab today

• Project proposal due April 8 (short)
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• SVM extensions

• Introduction to neural networks

• Fully connected (FC) neural networks

• Image data format and intro to Lab 7
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SVM dual optimization problem





Kernel Idea
• By solving the dual form of the problem, we have seen 

how all computations can be done in terms of inner 
products between examples

• One example of an inner product is the dot product, 
which is the linear version of SVMs

• But there are many others!

• Intuition: if points are close together, their kernel 
function will have a large value (measure of similarity)



Kernel Trick example

Image: Shiyu Ji (wikipedia)

Original feature space
Mapping after applying kernel 
(can now find a hyperplane)

Kernel function: K(x, z) = x•z + ||x||2 ||z||2

Feature mapping: φ(x) = (x1, x2,  x12 + x22)



Gaussian Kernel
• Gaussian kernel is near 0 when points are far 

apart and near 1 when they are similar
• Also called Radial Basis Function (RBF) kernel



Gaussian Kernel
• Gaussian kernel is near 0 when points are far 

apart and near 1 when they are similar
• Also called Radial Basis Function (RBF) kernel

Often re-parametrized by 
gamma



Soft-margin SVMs (non-separable case)

• Idea: we will use regularization to add a cost for each 
point being incorrectly classified by the hyperplane

• Hopefully many costs will be 0, but we can 
accommodate a few outliers

Figure: Andrew Ng



Soft-margin SVMs (non-separable case)

• New optimization problem with regularization

"flexible margin"



Meta-optimization process
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Meta-optimization process
• Incremental SVM optimization algorithm

• Choose a subset S of examples and run 
optimization to get alpha values

• Identify which alpha values are 0 => these 
cannot be support vectors in final solution!

• Discard these points and add new ones; repeat
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Meta-optimization: example

K = 4
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Round 1:
* S = {x1, x2, x4, x5}
* Support vectors are: x4, x5
* Alpha 0: x1, x2 
* Hyperplane:
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Round 3:
* S = {x4, x5, x6, x7}
* Support vectors are: x4, x5, x7 
* Alpha 0: x6
* Hyperplane:
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Round 4:
* S = {x4, x5, x7, x8}
* Support vectors are: x4, x5, x7 
* Alpha 0: x8
* Hyperplane:

x8
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Round 5:
* S = {x4, x5, x7, x9}
* Support vectors are: x4, x7, x9 
* Alpha 0: x5
* Hyperplane:

x9
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Handout 16, Final Solution
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Disadvantages of SVMs

• Difficult to choose a kernel function

• Does not naturally take into account the 
correlations between features

• Hard to understand and interpret what the 
model has learned
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What society thinks I do What other computer 
scientists think I do

What I 
think I do

What I 
really do

What mathematicians think I do

What my boss thinks I do

MACHINE LEARNING
Adapted from: “Know Your Meme”

Takeaway: we should understand 

the methods we are using!



Biological Inspiration

Figure: Stanford CS231n http://cs231n.github.io/neural-networks-1/



Goal: learn from complicated inputs
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Idea: transform data into lower dimension
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hidden
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Multi-layer networks = “deep learning”
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“Deep learning for population genetic inference”, PLOS Comp Bio, 2016 

Example from my research:
learning about evolution from genetic data



History of Neural Networks

• Perceptron can be interpreted as a simple 
neural network

• Misconceptions about the weaknesses of 
perceptrons contributed to declining funding 
for NN research

• Difficulty of training multi-layer NNs 
contributed to second setback

• Mid 2000’s: breakthroughs in NN training 
contribute to rise of “deep learning”



2006: Hinton and Salakhutdinov  
make a break-through in 

initializing deep learning networks 

Number of papers that mention “deep 
learning” over time
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Big picture for today
• Neural networks can approximate any function!

• For our purposes in ML, we want to use them to 
approximate a function from our inputs to our 
outputs

• We will train our network by asking it to minimize 
the loss between its output and the true output

• We will use SGD-like approaches to minimize loss
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• Introduction to neural networks

• Fully connected (FC) neural networks

• Image data format and intro to Lab 7



Fully Connected Neural Network Architecture

…









Option 1: sigmoid function

• Input: all real numbers, output: [0, 1]

• Derivative is convenient



Option 2: hyperbolic tangent

• Input: all real numbers, output: [-1, 1]



Option 3: Rectified Linear Unit (ReLU)

• Return x if x is positive (i.e. threshold at 0)



Pros and Cons of Activation Functions

1) Sigmoid

More info:
http://cs231n.github.io/neural-networks-1/

• (-) When input becomes very positive or very negative, 
gradient approaches 0 (saturates and stops gradient descent)

• (-) Not zero-centered, so gradient on weights can end up all 
positive or all negative (zig-zag in gradient descent)

• (+) Derivative is easy to compute given function value!

http://cs231n.github.io/neural-networks-1/
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Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

3) ReLU

More info:
http://cs231n.github.io/neural-networks-1/

• (-) When input becomes very positive or very negative, 
gradient approaches 0 (saturates and stops gradient descent)

• (-) Not zero-centered, so gradient on weights can end up all 
positive or all negative (zig-zag in gradient descent)

• (+) Derivative is easy to compute given function value!

• (-) Still has a tendency to prematurely kill the gradient
• (+) Zero-centered so we get a range of gradients
• (+) Rescaling of sigmoid function so derivative is also not too 

difficult

• (+) Works well in practice (accelerates convergence)
• (+) Function value very easy to compute! (no exponentials)
• (-) Units can “die” (no signal) if input becomes too negative 

throughout gradient descent

http://cs231n.github.io/neural-networks-1/


Mini-batches
• So far in this class, we have considered 

stochastic gradient descent, where one data 
point is used to compute the gradient and 
update the weights

• On the flipside is batch gradient descent, 
where we compute the gradient with respect 
to all the data, and then update the weights

• A middle ground uses mini-batches of 
examples before updating the weights. This is 
the approach we will use in Lab 7.



• The output of the final fully connected layer is a vector 
of length K (number of classes)

• The raw scores are transformed into probabilities using 
the softmax function: (let sk be the score for class k)

• Then we apply cross-entropy loss to these probabilities

K

Notes about scores and softmax



• The output of the final fully connected layer is a vector 
of length K (number of classes)

• The raw scores are transformed into probabilities using 
the softmax function: (let sk be the score for class k)

• Then we apply cross-entropy loss to these probabilities

K

Notes about scores and softmax

Think about outside of class:
• Why do we use exp?
• Why don’t we just take the max score?



Handout 17
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Lab 7 data pre-processing
• It is helpful to have our data be zero-centered, so 

we will subtract off the mean

• It is also helpful to have the features be on the 
same scale, so we will divide by the standard 
deviation

• We will compute the mean and std with respect 
to the training data, then apply the same 
transformation to all datasets



• Input is now itself a multi-dimensional array
– Also known as a tensor!

• For images, often the shape of each image will 
be (width, height, 3) for RGB channels

• Need to “flatten” or “unravel” for fully 
connected networks

Lab 7 data pre-processing


