
CS 360: Machine Learning

Sara Mathieson, Sorelle Friedler
Spring 2024

Admin
• Lab 4 and Lab 5 graded
– Any regrade requests (including midterm) must be

brought within 1 week of receiving your grade

• Lab 6 was due last night (see Piazza for
runtime issues if you’re taking a late day)

• Lab 7 posted, due Thurs April 4
– Last lab with required partners
– We can form partners during lab today

• Project proposal due April 8 (short)

Outline for March 26

• SVM extensions

• Introduction to neural networks

• Fully connected (FC) neural networks

• Image data format and intro to Lab 7

Outline for March 26

• SVM extensions

• Introduction to neural networks

• Fully connected (FC) neural networks

• Image data format and intro to Lab 7

SVM dual optimization problem

Kernel Idea
• By solving the dual form of the problem, we have seen

how all computations can be done in terms of inner
products between examples

• One example of an inner product is the dot product,
which is the linear version of SVMs

• But there are many others!

• Intuition: if points are close together, their kernel
function will have a large value (measure of similarity)

Kernel Trick example

Image: Shiyu Ji (wikipedia)

Original feature space
Mapping after applying kernel
(can now find a hyperplane)

Kernel function: K(x, z) = x•z + ||x||2 ||z||2

Feature mapping: φ(x) = (x1, x2, x12 + x22)

Gaussian Kernel
• Gaussian kernel is near 0 when points are far

apart and near 1 when they are similar
• Also called Radial Basis Function (RBF) kernel

Gaussian Kernel
• Gaussian kernel is near 0 when points are far

apart and near 1 when they are similar
• Also called Radial Basis Function (RBF) kernel

Often re-parametrized by
gamma

Soft-margin SVMs (non-separable case)

• Idea: we will use regularization to add a cost for each
point being incorrectly classified by the hyperplane

• Hopefully many costs will be 0, but we can
accommodate a few outliers

Figure: Andrew Ng

Soft-margin SVMs (non-separable case)

• New optimization problem with regularization

"flexible margin"

Meta-optimization process
• Incremental SVM optimization algorithm

Meta-optimization process
• Incremental SVM optimization algorithm

• Choose a subset S of examples and run
optimization to get alpha values

Meta-optimization process
• Incremental SVM optimization algorithm

• Choose a subset S of examples and run
optimization to get alpha values

• Identify which alpha values are 0 => these
cannot be support vectors in final solution!

Meta-optimization process
• Incremental SVM optimization algorithm

• Choose a subset S of examples and run
optimization to get alpha values

• Identify which alpha values are 0 => these
cannot be support vectors in final solution!

• Discard these points and add new ones; repeat

x1

x2

x1 x2

x3

x5 x4

x6 x8

x7

x9

Meta-optimization: example

x1

x2

x1 x2

x3

x5 x4

x6 x8

x7

x9

Meta-optimization: example

K = 4

x1

x2

x1 x2

x3

x4

Round 1:
* S = {x1, x2, x3, x4}
* Support vectors are: x1, x2, x4
* Alpha 0: x3
* Hyperplane:

x1

x2

x1 x2

x4x5

Round 1:
* S = {x1, x2, x4, x5}
* Support vectors are: x4, x5
* Alpha 0: x1, x2
* Hyperplane:

x1

x2

x4x5

x6

x7

Round 3:
* S = {x4, x5, x6, x7}
* Support vectors are: x4, x5, x7
* Alpha 0: x6
* Hyperplane:

x1

x2

x4x5

x7

Round 4:
* S = {x4, x5, x7, x8}
* Support vectors are: x4, x5, x7
* Alpha 0: x8
* Hyperplane:

x8

x1

x2

x4x5

x7

Round 5:
* S = {x4, x5, x7, x9}
* Support vectors are: x4, x7, x9
* Alpha 0: x5
* Hyperplane:

x9

x1

x2

x4x5

x7

x9

x1 x2

x6 x8

x3

Handout 16, Final Solution

Discuss with a partner

Discuss with a partner

x1

x2

x1

x2

x3

x5
x4

x6

Discuss with a partner: what are the support vectors?

x1

x2

x1

x2

x3

x5
x4

x6

Discuss with a partner: what are the support vectors?

Disadvantages of SVMs

• Difficult to choose a kernel function

• Does not naturally take into account the
correlations between features

• Hard to understand and interpret what the
model has learned

Outline for March 26

• SVM extensions

• Introduction to neural networks

• Fully connected (FC) neural networks

• Image data format and intro to Lab 7

What society thinks I do What other computer
scientists think I do

What I
think I do

What I
really do

What mathematicians think I do

What my boss thinks I do

MACHINE LEARNING
Adapted from: “Know Your Meme”

Takeaway: we should understand

the methods we are using!

Biological Inspiration

Figure: Stanford CS231n http://cs231n.github.io/neural-networks-1/

Goal: learn from complicated inputs

X1

X4

X2

X3

X6

X5

input data

? Y1

Y2

Y3

parameters

(smiling)

(glasses)

(eye size)

X1

X4

X2

X3

X6

X5

input data

Y1

Y2

Y3

parametershidden layer

(smiling)

(glasses)

(eye size)

Idea: transform data into lower dimension

X1

X4

X2

X3

X6

X5

input data

Y1

Y2

Y3

hidden
layer 2

parameters

(smiling)

(glasses)

(eye size)

hidden
layer 1

Multi-layer networks = “deep learning”

X1#

X4#

X2#

X3#

X345#

…
#

statistics#

N2#

N3#

g1#

g2#

g25#

hidden#
layer72#

population#
sizes#

selection#

N1#

S#

GACTGGCTA
AGCTAGCTT
TAATCCGCA

h1#

h2#

h3#

h50#

hidden#
layer71#

…
#

…
#

“Deep learning for population genetic inference”, PLOS Comp Bio, 2016

Example from my research:
learning about evolution from genetic data

History of Neural Networks

• Perceptron can be interpreted as a simple
neural network

• Misconceptions about the weaknesses of
perceptrons contributed to declining funding
for NN research

• Difficulty of training multi-layer NNs
contributed to second setback

• Mid 2000’s: breakthroughs in NN training
contribute to rise of “deep learning”

2006: Hinton and Salakhutdinov
make a break-through in

initializing deep learning networks

Number of papers that mention “deep
learning” over time

Big picture for today
• Neural networks can approximate any function!

Big picture for today
• Neural networks can approximate any function!

• For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

Big picture for today
• Neural networks can approximate any function!

• For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

• We will train our network by asking it to minimize
the loss between its output and the true output

Big picture for today
• Neural networks can approximate any function!

• For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

• We will train our network by asking it to minimize
the loss between its output and the true output

• We will use SGD-like approaches to minimize loss

Outline for March 26

• SVM extensions

• Introduction to neural networks

• Fully connected (FC) neural networks

• Image data format and intro to Lab 7

Fully Connected Neural Network Architecture

…

Option 1: sigmoid function

• Input: all real numbers, output: [0, 1]

• Derivative is convenient

Option 2: hyperbolic tangent

• Input: all real numbers, output: [-1, 1]

Option 3: Rectified Linear Unit (ReLU)

• Return x if x is positive (i.e. threshold at 0)

Pros and Cons of Activation Functions

1) Sigmoid

More info:
http://cs231n.github.io/neural-networks-1/

• (-) When input becomes very positive or very negative,
gradient approaches 0 (saturates and stops gradient descent)

• (-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

• (+) Derivative is easy to compute given function value!

http://cs231n.github.io/neural-networks-1/

Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

More info:
http://cs231n.github.io/neural-networks-1/

• (-) When input becomes very positive or very negative,
gradient approaches 0 (saturates and stops gradient descent)

• (-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

• (+) Derivative is easy to compute given function value!

• (-) Still has a tendency to prematurely kill the gradient
• (+) Zero-centered so we get a range of gradients
• (+) Rescaling of sigmoid function so derivative is also not too

difficult

http://cs231n.github.io/neural-networks-1/

Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

3) ReLU

More info:
http://cs231n.github.io/neural-networks-1/

• (-) When input becomes very positive or very negative,
gradient approaches 0 (saturates and stops gradient descent)

• (-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

• (+) Derivative is easy to compute given function value!

• (-) Still has a tendency to prematurely kill the gradient
• (+) Zero-centered so we get a range of gradients
• (+) Rescaling of sigmoid function so derivative is also not too

difficult

• (+) Works well in practice (accelerates convergence)
• (+) Function value very easy to compute! (no exponentials)
• (-) Units can “die” (no signal) if input becomes too negative

throughout gradient descent

http://cs231n.github.io/neural-networks-1/

Mini-batches
• So far in this class, we have considered

stochastic gradient descent, where one data
point is used to compute the gradient and
update the weights

• On the flipside is batch gradient descent,
where we compute the gradient with respect
to all the data, and then update the weights

• A middle ground uses mini-batches of
examples before updating the weights. This is
the approach we will use in Lab 7.

• The output of the final fully connected layer is a vector
of length K (number of classes)

• The raw scores are transformed into probabilities using
the softmax function: (let sk be the score for class k)

• Then we apply cross-entropy loss to these probabilities

K

Notes about scores and softmax

• The output of the final fully connected layer is a vector
of length K (number of classes)

• The raw scores are transformed into probabilities using
the softmax function: (let sk be the score for class k)

• Then we apply cross-entropy loss to these probabilities

K

Notes about scores and softmax

Think about outside of class:
• Why do we use exp?
• Why don’t we just take the max score?

Handout 17

Outline for March 26

• SVM extensions

• Introduction to neural networks

• Fully connected (FC) neural networks

• Image data format and intro to Lab 7

Lab 7 data pre-processing
• It is helpful to have our data be zero-centered, so

we will subtract off the mean

• It is also helpful to have the features be on the
same scale, so we will divide by the standard
deviation

• We will compute the mean and std with respect
to the training data, then apply the same
transformation to all datasets

• Input is now itself a multi-dimensional array
– Also known as a tensor!

• For images, often the shape of each image will
be (width, height, 3) for RGB channels

• Need to “flatten” or “unravel” for fully
connected networks

Lab 7 data pre-processing

