CS 360: Machine Learning

Sara Mathieson, Sorelle Friedler
Spring 2024

HAVE RFORD

COLLEGE

Admin

Lab 4 and Lab 5 graded

— Any regrade requests (including midterm) must be
brought within 1 week of receiving your grade

Lab 6 was due last night (see Piazza for
runtime issues if you're taking a late day)

Lab 7 posted, due Thurs April 4

— Last lab with required partners
— We can form partners during lab today

Project proposal due April 8 (short)

Outline for March 26

SVM extensions
Introduction to neural networks
Fully connected (FC) neural networks

Image data format and intro to Lab 7

Outline for March 26

e SVM extensions

- SVM dual optimization proble

Kernel Idea

By solving the dual form of the problem, we have seen
how all computations can be done in terms of inner
products between examples

One example of an inner product is the dot product,
which is the linear version of SVMs

But there are many others!

Intuition: if points are close together, their kernel
function will have a large value (measure of similarity)

Kernel Trick example

Feature mapping: Q(x) = (X1, X2, X412 + X2)

Mapping after applying kernel
Original feature space (can now find a hyperplane)

Kernel function: K(x, z) = x-z + ||x||2 ||z||?

Image: Shiyu Ji (wikipedia)

Gaussian Kernel

* Gaussian kernel is near O when points are far
apart and near 1 when they are similar

* Also called Radial Basis Function (RBF) kernel

= 212
K(f,z):exp(|2 Z”)

20?2

Gaussian Kernel

* Gaussian kernel is near O when points are far
apart and near 1 when they are similar

* Also called Radial Basis Function (RBF) kernel

= 212
K(f,z):exp(|2 Z”)

20?2

Often re-parametrized by
gamma

K(Z,7) = exp (—|7 — Z|*)

Soft-margin SVMs (non-separable case)

e |dea: we will use regularization to add a cost for each
point being incorrectly classified by the hyperplane

* Hopefully many costs will be 0, but we can
accommodate a few outliers

A

Soft-margin SVMs (non-separable case)

* New optimization problem with regularization

n
min %H’U_J’Hz + C Z gz "flexible margin"
=1

§,w,b /

s.t. yz-(zﬁ-a?ier)Zl— i=1,--.n

and & >0, i=1,---,n

Meta-optimization process

* Incremental SVM optimization algorithm

Meta-optimization process

* Incremental SVM optimization algorithm

* Choose a subset S of examples and run
optimization to get alpha values

Meta-optimization process

* Incremental SVM optimization algorithm

* Choose a subset S of examples and run
optimization to get alpha values

* |dentify which alpha values are 0 => these
cannot be support vectors in final solution!

Meta-optimization process

Incremental SVM optimization algorithm

Choose a subset S of examples and run
optimization to get alpha values

ldentify which alpha values are 0 => these
cannot be support vectors in final solution!

Discard these points and add new ones; repeat

Meta-optimization: example

+ K

Meta-optimization: example

4

Round 1:

*S ={xy, Xy, X3, X}

* Support vectors are: xq, X5, X,
* Alpha 0: x5

* Hyperplane: —

Round 1:

* S= {Xlr Xz; X4r XS}

* Support vectors are: x,, X-
* Alpha 0: x4, x,

* Hyperplane: —

¥ -
: -
L] L) Xl
0 3 4 5 6

Round 3:

i(z * S= {X4; X5; X6/ X7}
6. * Support vectors are: x,, Xs, X5
* Alpha 0: x,
S,

* Hyperplane: —

Round 4:

i(z w S - {X4, X5; X7) X8}
6. * Support vectors are: x,, Xs, X5
* Alpha 0: xg
S,

* Hyperplane: —

Round 5:

*S = {x,, Xc, X7, X5}

* Support vectors are: x,, X5, Xq
* Alpha 0: x

* Hyperplane: —

Xs Xy

- T

0 L]) Xl
0 4 S 6

Handout 16, Final Solution

Discuss with a partner

1. If Z; is a support vector, what can we say about it? Circle all that apply:

(a) its Lagrange multiplier a;; > 0
(b) its Lagrange multiplier o;; = 0
(¢) y;(- a:z—l—b)—O

(d) y;(w -7 +b) =1

(e) @; lies on the margin

Discuss with a partner

1. If Z; is a support vector, what can we say about it? Circle all that apply:

(a) its Lagrange multiplier a;; > 0
(b) its Lagrange multiplier o;; = 0
(¢) y;(- xz—kb)—O

(d) y;(w -7 +b) =1

(e) @; lies on the margin

Discuss with a partner: what are the support vectors?

X3
TN

6.

Discuss with a partner: what are the support vectors?

X
N

6/
5
4
3
2]

/1.

/ Xs
L] 0 L] L) L X4

Disadvantages of SVMs

e Difficult to choose a kernel function

* Does not naturally take into account the
correlations between features

* Hard to understand and interpret what the
model has learned

Outline for March 26

* |Introduction to neural networks

Adapted from: “Know Your Meme”

MACHINE LEARNING

Vul(w, b, a) = Zay()z() 0

This implies that
w= Z iy D@,
i=1

As for the derivative with respect to b, we obtain
9 o
—L (w, b,) Z oy = 0.

If we take the definition of w in Equation (9) and plug that back int
Lagrangian (Equation 8), and simplify, we get

L(w,b,a) E(y - = Z y@yUla, i () z0) — qu y@. %4
But from Equation (10), the last term must be zero, so we obtain
L(w,b,a) Zaf—ZyUy(Ja(yf(

other computer
scientists think | do

What |
think | do

>>> from sklearn import svm What |
>>> import tensorflow as tf [GELAE

What mathematicians think | do

Biological Inspiration

impulses carried
toward cell body
branches
of axon

axon
terminals

impulses carried
away from cell body

Zo wo
*@® synapse
axon from a neuron . i
woT(
dendri T.(j:*‘
cell body f Zw'””' L5
w1 3

Y

Zwiwi—l—b

output axon

activation
function

W2

Figure: Stanford CS231n http://cs231n.github.io/neural-networks-1/

Goal: learn from complicated inputs

° Y, (glasses)

Y, | (smiling)

Y, | (eye size)

parameters

input data

Image: Labeled Faces in the Wild (UMass)

ldea: transform data into lower dimension

input data

Yy

Y3

(glasses)

Y, | (smiling)

(eye size)

parameters

Multi-layer networks = “deep learning”

Y, | (glasses)

Y, | (smiling)

) Y, | (eye size)

parameters

hidden

layer 2
hidden
input data layer 1

Example from my research:
learning about evolution from genetic data

population
sizes

GACTGGCTA
AGCTAGCTT
TAATCCGCA

g | selection

hidden
layer 2

“Deep learning for population genetic inference”, PLOS Comp Bio, 2016

History of Neural Networks

Perceptron can be interpreted as a simple
neural network

Misconceptions about the weaknesses of
perceptrons contributed to declining funding
for NN research

Difficulty of training multi-layer NNs
contributed to second setback

Mid 2000’s: breakthroughs in NN training
contribute to rise of “deep learning”

Number of papers that mention “deep
learning” over time

1000}

8 800 2006: Hinton and Salakhutdinov 1
S make a break-through in
'_E initializing deep learning networks
© 600} :
Y
o
-
Q
Q
& 400} 1
-
-

200 y

1%80 1985 1990 1995 2000 2005 2010

year

Big picture for today

* Neural networks can approximate any function!

Big picture for today

* Neural networks can approximate any function!

* For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

Big picture for today

* Neural networks can approximate any function!

* For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

* We will train our network by asking it to minimize
the loss between its output and the true output

Big picture for today

Neural networks can approximate any function!

For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

We will train our network by asking it to minimize
the loss between its output and the true output

We will use SGD-like approaches to minimize loss

Outline for March 26

* Fully connected (FC) neural networks

.
Ne=

./IA\07 O~

S

P

Option 1: sigmoid function

* |[nput: all real numbers, output: [0, 1]

1
o(x) = .
1 +e* |
“4
L . oz
e Derivative IS convenient T S

o'(z) = o(z)(1 - o(z))

Option 2: hyperbolic tangent

* |[nput: all real numbers, output: [-1, 1]

Zr —X
e — €
tanh(x) =
10} e
¥ 4
-
0.5 ;'."
;n‘
.......... SNENEPTS. EERPE.
10 5 ‘c: 5 10
—opf
/a' E
-——-Zl.oh

Option 3: Rectified Linear Unit (ReLU)

* Return x if x is positive (i.e. threshold at 0)

f(x) = max(0, x)

10 F

A R e TR R
-10 -5 5 10

Pros and Cons of Activation Functions

1) Sigmoid .

(-) When input becomes very positive or very negative,

gradient approaches 0 (saturates and stops gradient descent)

* (-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

* (+) Derivative is easy to compute given function value!

http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

(-) When input becomes very positive or very negative,
gradient approaches 0 (saturates and stops gradient descent)
(-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

(+) Derivative is easy to compute given function value!

(-) Still has a tendency to prematurely kill the gradient

(+) Zero-centered so we get a range of gradients

(+) Rescaling of sigmoid function so derivative is also not too
difficult

http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

3) RelLU

(-) When input becomes very positive or very negative,
gradient approaches 0 (saturates and stops gradient descent)
(-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

(+) Derivative is easy to compute given function value!

(-) Still has a tendency to prematurely kill the gradient

(+) Zero-centered so we get a range of gradients

(+) Rescaling of sigmoid function so derivative is also not too
difficult

(+) Works well in practice (accelerates convergence)

(+) Function value very easy to compute! (no exponentials)
(-) Units can “die” (no signal) if input becomes too negative
throughout gradient descent

http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

e Sofari

Mini-batches

n this class, we have considered

stochastic gradient descent, where one data

point is used to compute the gradient and
update the weights

e Onthe

where
to all t

e A mido

flipside is batch gradient descent,
we compute the gradient with respect
ne data, and then update the weights

le ground uses mini-batches of

examp

es before updating the weights. This is

the approach we will use in Lab 7.

Notes about scores and softmax

The output of the final fully connected layer is a vector
of length K (number of classes)

The raw scores are transformed into probabilities using
the softmax function: (let s, be the score for class k)

Then we apply cross-entropy loss to these probabilities

Notes about scores and softmax

The output of the final fully connected layer is a vector
of length K (number of classes)

The raw scores are transformed into probabilities using
the softmax function: (let s, be the score for class k)

e’k
SV Think about outside of class:
yk T K S Why do we use exp?
E :j=1 €"J * Why don’t we just take the max score?

Then we apply cross-entropy loss to these probabilities

Handout 17

Outline for March 26

* |mage data format and intro to Lab 7

Lab 7 data pre-processing

* |tis helpful to have our data be zero-centered, so
we will subtract off the mean

* |tis also helpful to have the features be on the
same scale, so we will divide by the standard
deviation

* We will compute the mean and std with respect
to the training data, then apply the same
transformation to all datasets

Lab 7 data pre-processing

* |Input is now itself a multi-dimensional array

— Also known as a tensor!

* For images, often the shape of each image will
be (width, height, 3) for RGB channels

* Need to “flatten” or “unravel” for fully
connected networks

