Logistic Regression and Regularization

1. A key step in our derivation of the SGD updates for logistic regression was the fact that $g^{\prime}(z)=$ $g(z)(1-g(z))$, where $g(z)=\frac{1}{1+e^{-z}}$. This allowed us to cancel out the terms in the denominators. Compute the derivative of $g(z)$ to demonstrate this fact. What does $g^{\prime}(z)$ tend to as $z \rightarrow \infty$? As $z \rightarrow-\infty$?
2. The confusion matrices below show hiring predictions separated by demographic group (non-men and men). To put this in the context of our fairness regularization setup, identify $Y \in\{0,1\}$ and $A \in\{0,1\}$.

Non-men				Men		
	Predicted don't hire	Predicted Do hire			Predicted don't hire	Predicted DO hire
Test Label wasn't hired	542	170		Test Label wasn't hired	1598	430
Test Label WAS hired	23	56		Test Label WAS hired	340	190

3. Compute the demographic parity:

$$
\frac{P(\hat{Y}=1 \mid A=1)}{P(\hat{Y}=1 \mid A=0)}
$$

4. Compute the equalized odds:

$$
\frac{P(\hat{Y}=1 \mid A=1, Y=y)}{P(\hat{Y}=1 \mid A=0, Y=y)} \quad \text { for } \quad y \in\{0,1\}
$$

