
Advanced Regression
CS 360 Machine Learning

Week 5, Day 1

February 20, 2024

Contents

1 Stochastic gradient descent 1

2 Logistic Regression 2
2.1 Maximum likelihood estimation example . 3
2.2 Maximum likelihood estimation for logistic regression . 4
2.3 Multi-class classification with logistic regression . 5

1 Stochastic gradient descent

Recall that in stochastic gradient descent we think about starting in a random location and then walk
towards what we hope is a minimum of the function. We’re trying to minimize a function that is capturing
a notion of error. We have some learning rate or learning step (denoted α) that helps us walk along the
function towards that minimum. Ideally we do this quickly, but not so quickly that we overshoot. If the
learning rate is too small, we can get stuck somewhere that’s not the minimum. If the learning rate is too
high, we might overshoot the minimum (bounce off the walls of the function) and we might not converge.
In reality, there may also be more than one minimum including both local minima and a global minimum.
We might even end up stopping on a plateau if the stopping criteria is that the result isn’t changing too
much. We need to be aware that we might not end up in the global minimum using gradient descent.

The classic stochastic gradient descent algorithm is:

set w = 0 vector

while cost J(w) still changing (or max iter reached):

shuffle data points

for i = 1 ... n:

w = w - alpha (derivative of J(w) wrt xi)

store J(w)

Note that we have a negative sign in this algorithm that tells us to go in the opposite direction from the
derivative — why do we do that? Recall that we’re trying to minimize J(w). In order to move towards
the minimum of the function J(w), we go in the opposite direction of its derivative.

Why do we need to shuffle the data points? It’s been shown to improve convergence in practice. Going
in the same data order each time can bias you towards specific solutions if they’re in a specific order (e.g.,
sorted) and empirically shuffling the order has been shown to improve the convergence speed. It’s known

1

CS360: Machine Learning 2 LOGISTIC REGRESSION

as “stochastic” because of this shuffle step. Note that no matter what you still use the full dataset, just in
different orders.

There are multiple types of gradient descent:

• Batch gradient descent — The derivative is taken over the whole dataset; you consider the full
training dataset before making a weight update. This is generally slower and requires a smaller
learning rate, but will work. The weights aren’t updated frequently enough for it to be fast.

• Stochastic gradient descent — Shuffle the data and make a weight update after each training
example (as shown above). This updates the weights more frequently (too frequently) than the batch
version with potentially larger step sizes.

• Mini-batch gradient descent — Update after a “mini-batch” of training examples (e.g., 50 training
examples). This subset is chosen randomly (shuffled). An epoch is one pass through the entire training
dataset based on the chosen mini-batch size, seeing every example exactly once. This version of
gradient descent is “just right” in the sense that it updates weights after each mini-batch which is
more frequently than batch gradient descent and less often than stochastic gradient descent.

Note that you don’t look at the data more or less with any of these approaches, you just update the weights
more or less frequently. A comparison between these methods can be visualized considering the gradient
descent paths (see the textbook figure from Chapter 4).

2 Logistic Regression

Recall that the model we’re considering in general is

h~w(~x) = p(y = 1 | ~x)

This is sort of like the posterior probability, but is a model for that. Given our example ~x the goal is to
determine the probability of y = 1. Again, we’re considering a binary classification problem (y ∈ {0, 1})
for now.

In a logistic regression model we say that:

h~w(~x) = p(y = 1|~x) =
1

1 + e−~w·~x

and recall that:
~w · ~x = w0 + w1x1 + ...wpxp

where w0 is a “fake” 1. Here, we are considering how to fit a model (i.e., training time), so recall that we
know ~x (the example) and it’s associated label y in this case and don’t know the weights ~w.

How do we find ~w? We use the likelihood function:

L(~w) =
n∏

i=1

h~w(~xi)
yi (1− h~w(~xi))

1−yi

Probability the label (yi) is 1

Probability the label (yi) is 0

Recall the definition of h~w(~xi) from above. Given this, the first part inside the product is the probability
the label is 1 for a specific ~xi, and the second part gives the probability of label 0. Note that for each yi
we’ll only have one of these terms contributing to the product, since the other will be 0.

Overall we want to maximize the likelihood. This is what a model does! If the true label is 0, we want
the probability of predicting 0 to be high. The unknown is ~w – this is part of the training process, and in
this case the values of y and ~x are known. If we imagine that this data came from some true model, we
want to maximize the chances of getting these values back at a later testing time.

Sara Mathieson, Sorelle Friedler Page 2 of 6

CS360: Machine Learning 2 LOGISTIC REGRESSION

2.1 Maximum likelihood estimation example

Consider a coin flip example with outcomes 0 or 1 meant to mirror the logistic regression outcomes but
where we only have y values. Suppose that it’s a biased coin where the probability of getting a 1 is p and
the probability of 0 is 1− p. The number of flips is n. Consider the vector of coin flips:

~y = [0 0 1 1 0 1 0 1 0 0]

I want to solve for p. The likelihood of p, denoted L(p) is:

L(p) = (1− p)(1− p)pp(1− p)p(1− p)p(1− p)(1− p)

based on the specific y vector above. This can be rewritten as:

L(p) = p4(1− p)6

A maximum likelihood in general is focused on explaining the observed data, i.e., on finding p based on
these observations. I can describe the above likelihood more generally as:

L(p) =
n∏

i=1

pyi(1− p)1−yi

Note that this idea is very similar to logistic regression!
Consider the handout. The number of 1s in the data can be denoted as ȳn where ȳ denotes the mean.

Similarly, the number of 0s can be written as (1− ȳ)n. A few additional hints for the handout:

• log(ba) = a log b

• When f(x) = log x then f ′(x) = 1
x

When we consider how to solve for the likelihood function L(p) we can instead take the log of the
function (denoted `(p) and referred to as the log likelihood). Maximizing `(p) will still allow us to go in the
right direction in terms of maximizing the original function L(p). Considering the L(p) as defined above,
and using the above observations and hints, we get:

`(p) = nȳ log p+ n(1− ȳ) log(1− p)
Number of 1s

Number of 0s

In order to maximize the (log) likelihood function, we next take the derivative of `(p) with respect to
p, denoted `′(p), and set it equal to 0. Solving for p, this becomes our maximum likelihood estimator p̂:

`′(p) =
nȳ

p
− n(1− ȳ)

1− p
= 0

p̂ = ȳ

With the specific example above, this gives p̂ = ȳ = 4
10 . This example shows on a small scale what’s

happening for each of these steps: 1) the goal is to maximize the likelihood (which is a product), 2) we
turn the product into a sum by taking the log, 3) we take the derivative of the log likelihood, and 4) set it
equal to zero and solve for p. Sometimes we can’t do all these steps and then we use things like gradient
descent to approximate the steps of this process.

Sara Mathieson, Sorelle Friedler Page 3 of 6

CS360: Machine Learning 2 LOGISTIC REGRESSION

2.2 Maximum likelihood estimation for logistic regression

Turning back to our context of logistic regression, recall that our likelihood function is:

L(~w) =
n∏

i=1

h~w(~xi)
yi(1− h~w(~xi))

1−yi

We will start by taking the negative log likelihood. We want to maximize our likelihood function, so when
we take the negative log likelihood we want to minimize it. We’ll call this negative log likelihood function
J :

J(~w) = − logL(~w)

= −
n∑

i=1

[yi log h~w(~xi) + (1− yi) log(1− h~w(~xi))]

Consider what this cost function looks like for a single example:

J~x(~w) =

{
− log h~w(~x) if y = 1

− log(1− h~w(~x)) if y = 0

If we consider the graph of this (see slides for figure) with h(~x) on the x-axis and J(~w) on the y-axis,
the cost function starts at the origin and increases in an exponential curve wsith an asymptote at x = 1
when y = 0. When y = 1 it’s the reverse with an asymptote at x = 0 and an intersection with the x-axis
at x = 1. As we predict more and more incorrect things, it drives up the cost – just as we’d like!

Stochastic Gradient Descent. Now, we’ll take the derivative of J , known as the gradient and
denoted ∇J , with respect to one example ~xi. In the context of the stochastic gradient descent algorithm
described earlier, this means we have the following steps:

shuffle the data

for i = 1...n

~w = ~w − α∇J~xi
(~w)

Note that we’ll update all weights at once based on one example (xi). What remains is to determine ∇J .
Recall that a single example xi contributes −

(
yi log h~w(~xi) + (1− yi) log(1−h~w(~xi))

)
to the overall sum of

J(~w). So we have

∇J~xi
(~w) = −∇~w

(
yi log h~w(~xi) + (1− yi) log(1− h~w(~xi))

)
= −

(
yi

h~w(~xi)
− 1− yi

1− h~w(~xi)

)
∇h~w(~xi)

In order to complete this calculation we’ll need to determine what ∇h~w(~xi) is. Recall that the logistic
function g(z) = 1

1+e−z . The derivative g′(z) = g(z)(1 − g(z)) (this calculation is left as an exercise to the
reader). Note that this derivative requires no knowledge other than the function value! This is useful in
practice. Using the chain rule and substituting this derivative above gives us:

= −
(yi
h~w(~xi)

− 1− yi
1− h~w(~xi)

)
h~w(xi)

(
1− h~w(~xi)

)
~xi

After simplifying this, you get:

=
(
− yi + yih~w(~xi) + h~w(~xi)− yih~w(~xi)

)
~xi

Sara Mathieson, Sorelle Friedler Page 4 of 6

CS360: Machine Learning 2 LOGISTIC REGRESSION

=
(
h~w(~xi) − yi

)
~xi

Predicted label

True label

This is the difference between the true value and the prediction scaled by the specific data point. This is
the ∇~wJ~xi

(~w) which we can plug into the algorithm weight update. We can think about this as taking one
example out of the cost function to consider the cost function with respect to a single example, while the
gradient is taken with respect to all of the weights. This is a good thing to remember for implementation;
all the weights are updated at the same time. It doesn’t make sense in terms of the stability of the model
to update one weight at a time, but it’s ok to look at one data point at a time.

With the stochastic gradient descent calculation in place, we have almost all the pieces we need to
implement classification with logistic regression. The key pieces for stochastic gradient descent are the
hypothesis function (the prediction based on the logistic function), the cost function we want to minimize
(the negative log likelihood J(~w)), and the calculation of the gradient of that cost function (∇J(~w) with
respect to a single example xi. Finally, we apply a linear threshold (similar to that for the Näıve Bayes
model) to the final output to determine the classification, assumed by default to be 0.5 such that values
greater than or equal to 0.5 receive a predicted label of 1 and otherwise the predicted label is 0.

2.3 Multi-class classification with logistic regression

Often, we’re considering a classification of categorical items that are non-binary, such as political parties,
blood groups, etc. Multi-class logistic regression can help us do this. When we only have two classes, we
can always take 1−p to determine the probability of the other case — in multi-class classification we can’t
do that anymore. We use softmax to handle this.

Consider the two-class case where

h(~x) =
1

1 + e−~w·~x =
e~w·~x

e~w·~x + 1

We can think of the first part of the bottom term as the weight on class 1 and the second part as the
weight on class 0. We’re going to generalize this to K classes. Let ~̂y be my prediction vector:

~̂y = h~w(~x) =



p(y = 1 | ~x)
p(y = 2 | ~x)

.

.

.
p(y = K|~x)


We can transform this to get our softmax version of this prediction vector:

=
1∑K

k=1 e
~w(k)·~x



e~w
(1)·~x

e~w
(2)·~x

.

e
~w(i)·~x

.

e~w
(k)·~x


si

Normalization term

Sara Mathieson, Sorelle Friedler Page 5 of 6

CS360: Machine Learning 2 LOGISTIC REGRESSION

We refer to the right part of this as the score vector and each item’s exponent is denoted si. By raising
e to these si values, we’ll end up with positive values only, which will help us when we try to sum these
to 1. We add a normalization term so that these values sum to 1. (This softmax function is often used as
the last layer of a neural network.)

We can now consider a “one-hot” encoding of these vectors by having a 1 in the vector for the specific
class value and 0s in all the other places, for example:

~y =



0
0
0
.
.
.
1
.
.
.
0


Note that this is also a proper probability distribution that sums to 1.

Computing the cross entropy of the true values with the predictions (we can think of the binary logistic
regression cost function as this) we get:

yi log h~w(~xi) + (1− yi) log(1− h~w(~xi))

Generalizing this cost function to K classes, we again get cross entropy:

J(~w) = −
n∑

i=1

K∑
k=1

yik log p(yi = k|~xi)

One of these terms will be “on” for every example and the other terms will be “off.” This incentivizes the
probability of the true class to be as high as possible.

Sara Mathieson, Sorelle Friedler Page 6 of 6

	Stochastic gradient descent
	Logistic Regression
	Maximum likelihood estimation example
	Maximum likelihood estimation for logistic regression
	Multi-class classification with logistic regression

