Working with Likelihoods

1. Bernoulli Random Variable. Say we flip a weighted coin n times, and each time the probability of heads (1) is p, so the probability of tails (0) is $(1-p)$. Let y_{i} be the outcome of flip i. For example, if $n=10$, we might observe these values:

$$
\boldsymbol{y}=[0,0,1,1,0,1,0,1,0,0]
$$

In this case, the likelihood of p given this observed data is

$$
L(p)=(1-p) \cdot(1-p) \cdot p \cdot p \cdot(1-p) \cdot p \cdot(1-p) \cdot p \cdot(1-p) \cdot(1-p)=p^{4}(1-p)^{6}
$$

since we observe four 1's and six 0's. In general, we can write the likelihood as

$$
L(p)=\prod_{i=1}^{n} p^{y_{i}}(1-p)^{1-y_{i}}=p^{\# 1 s}(1-p)^{\# 0 s}
$$

so that for each y_{i}, only one of y_{i} and $\left(1-y_{i}\right)$ will be non-zero and contribute to the product. Note that $L(p \mid \boldsymbol{y})$ is a more proper way of writing this (i.e. given the data), but we often omit this conditional part.
(a) What is the \log likelihood $\ell(p)$ for this setup? Simplify as much as possible.
(b) Our goal is to maximize the log likelihood. Take the derivative with respect to p and set it equal to 0 . Solve for p - this becomes our MLE (maximum likelihood estimator), \hat{p}.
(c) For our concrete example above with $n=10$, what is the MLE \hat{p} ? Does this match your intuition?

