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1 Ada Boost

To recap what we talked about with ensembles, recall ensembles can decrease our testing error and make
our models less brittle. The overall goal is to lower both bias and variance, and by choosing a base classifier
that has high variance and low bias, when we average over multiple models we can achieve both low(er)
variance and low bias. Recall also that bootstrap sampling means sampling with replacement, which allows
us to generate different training datasets that have different (potentially repeated) examples making up
new datasets.

Recall that AdaBoost (adaptive boosting) starts with all examples equally weighted (1/n) and over T
iterations you first learn the base classifier with these weights trained on the full training data set, and
then change the weights for each example in the training dataset for future iterations (such that the sum
of the weights is always 1). Recall that this is distinct from the ensemble methods we mostly discussed
in the previous class since it uses the same training dataset but modifies the weights, and each iteration
depends on the previous one. In order to perform testing / predictions, you get the predictions from all
the base classifiers, and then vote based on how well each classifier did during training.

Now let’s discuss the details of the AdaBoost algorithm.

1.1 AdaBoost Algorithm Overview

Input

A set of n training examples, each with p features (represented by matrix X), and a vector of labels y
where each y ∈ {−1, 1} (binary classification). We also need to choose a family of classifiers (i.e. decision
stumps) that will work with weighted training examples, and a number of iterations T .

Initialization

• Assign uniform weights to all training data points: w
(1)
i = 1

n for i = 1, 2, · · · , n. Note that we require
the weights to sum to 1.
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Adaptive Procedure

For t = 1, 2, · · ·T , use the following procedure to find a new classifier and update the weights on the
training examples:

(a) Fit a classifier to the weighted training set. We will call this classifier h(t)(x).

(b) Compute weighted classification error on the training set:

ε =

n∑
i=1

w
(t)
i 1

(
yi ̸= h(t)(xi)

)
Note that since the weights sum to 1, 0 ≤ εt ≤ 1. However, since we are in a binary classification
scenario, we should never have an error greater than 0.5.

(c) Compute the score of the classifier (we would like to have a high score):

αt =
1

2
ln

(
1− εt
εt

)
The score is 0 when εt =

1
2 (random guessing). As εt → 0, αt → ∞ (i.e. a very good classifier).

(d) Using the score, update the weights on all the training examples. These are the weights we will use
for the next iteration:

w
(t+1)
i = ct w

(t)
i exp

(
−yiαth

(t)(xi)
)

where ct is a normalizer to ensure all the weights sum to 1:

ct =
1∑n

i=1 w
(t)
i exp

(
−yiαth

(t)(xi)
)

If the data point is classified correctly, yi and h(t)(xi) have the same sign and thus the previous weight
is multiplied by e−αt . Since αt is positive, this quantity is less than 1, so the weight is decreased. If
the data point is classified incorrectly, yi and h(t)(xi) have the opposite sign and thus the previous
weight is multiplied by e−αt . This is greater than 1, so the weight is increased.

This can also be expressed as:

w
(t+1)
i =

 ct w
(t)
i e−αt if yi = h(t)(xi) (down-weight correct examples)

ct w
(t)
i eαt if yi ̸= h(t)(xi) (up-weight incorrect examples)

Testing

For each test data point x, classify it as 1 or −1 using each classifier. Then weight the predictions by
the score of the classifier during training. So our final prediction/hypothesis for the example is:

h(x) = sign

(
T∑
t=1

αt · h(t)(x)

)
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Decision Tress with Weighted Examples

AdaBoost is a general algorithm, but it requires that the classifiers be able to work with weighted
training examples. For decision trees, this means we need to compute weighted conditional entropy, as well
as weighted classification results at the leaves.

Recall from CS 260 that entropy is defined as:

H(Y ) = −
∑

i∈vals(y)

p(i) log2 p(i)

Conceptually, if half of the values in the dataset are “yes” and the other half have a “no” label, that’s the
highest possible entropy of the dataset, while a dataset with all “yes” labels has an entropy of 0 (and the
same for a dataset where all the labels are “no.”)

Conditional entropy considers H(Y |X) where X is one of the features:

H(Y |X) =
∑

v∈vals(x)

p(X = v) H(Y |X = v)

This essentially weights by the number of examples that fall into each value category, and helps us to
understand how “ordered” or “predictable” the different subsets of the data are. For the jth feature
equalling value v, our definition of conditional entropy is:

H(Y |Xj = v) = −
∑

c∈vals(y)

P (Y = c|Xj = v) logP (Y = c|Xj = v)

This is the base computation that helps us to create decision trees, and other important models. These
probabilities are computed empirically based on our data, i.e., we count the occurrence and co-occurrence
of the values in the dataset:

p(Y = c|X = v) =
count(Y = c,X = v)

count(X = v)

But then in order to do weighted training examples, we need to calculate some of these values with
weights. Consider the conditional probability calculation, instead of counting the examples, we’ll count
their weights:

p(Y = c|Xj = v) =

∑n
i=1w

(t)
i 1(yi = c, xij = v)∑n

i=1w
(t)
i 1(xij = v)

We need to use a similar procedure for every probability involved in our entropy computations. When we
reach a leaf and need to decide which label to apply, we will again use weighted counts of the training
examples that fall into the partition at this leaf:

P (leaf label is 1) =

∑
i in leafw

(t)
i 1(yi = 1)∑

i in leafw
(t)
i

Note that in principle, the denominator is 1 since all the weights sum to 1. However, this is only if we
have been updating the weights each time we partition the data as we build the tree. We can alternatively
not modify the weights during tree building (since this interacts poorly with the AdaBoost algorithm) and
then just count them up in the denominator.
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2 Gradient Boosting

Gradient boosting is most standard in a regression context, while until now we’ve been talking about
classification. Suppose that I have a training set which follows a noisy quadratic, and suppose that I have
a model which is a piecewise constant. Now suppose that I have one model, this piecewise constant model,
in my ensemble. Gradient boosting considers the residuals–the distance from the training set examples to
the model. Then gradient boosting tries to fix a model to those residuals. The resulting model now adds
the original model to the model of the residuals. This will still not exactly fit the data, but it’ll be closer!
You can repeat this trick (many times if you want), again adding a model of the residuals to create the full
ensemble model. Since each classifier on its own is simple, this doesn’t suffer from overfitting. See Chapter
7 of the textbook or the slides for a nice figure illustrating this process.
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