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Admin

* Lab 2 due TODAY

* Sorelle office hours TODAY, 4-5pm in H110

* Lab 3 released tonight (Decision Trees)
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Outline for Feb 8

Finish Cross Validation
Decision Tree introduction
ID3 algorithm

Handout 6

Implementation suggestions



Outline for Feb 8

 Finish Cross Validation



Cross Validation: other considerations

e Can use cross-validation to choose
hyperparameters

e Leave-one-out cross validation (LOOCV)
— Special case of k=n

— Train using n-1 examples, evaluate on remaining
— Repeat n times

* Can do multiple trials of CV



Examples of parameters vs. hyperparameters

* Polynomial regression
— Hyperparameter: degree of the polynomial

— Parameters: weights on each feature (or power of
a feature)

* Logistic regression
— Hyperparameter: learning rate, max iterations
— Parameters: weights on each feature

* K-nearest neighbors

— Hyperparameters: K (number of neighbors),
distance metric



Hyperparameters

* Difficult to define precisely, but typically a
parameter that controls other parameters

 We can’t choose hyperparameters via test data
(breaks cardinal rule of not looking at our test
datal)

e But we can use validation data



Finding hyper-parameters

from sklearn.model_selection import GridSearchCV
. .
Grid search full_pipeline = Pipeline([
("preprocessing", preprocessing),

(]
Random search ("random_forest", RandomForestRegressor(random_state=42)),

1)
param_grid = [
{'preprocessing__geo_n_clusters': [5, 8, 10],
'random_forest__max_features': [4, 6, 8]},
{'preprocessing__geo__n_clusters': [10, 15],
'random_forest__max_features': [6, 8, 10]},
]
grid_search = GridSearchCV(full_pipeline, param_grid, cv=3,
scoring='neg_root_mean_squared_error"')
grid_search.fit(housing, housing_labels)

n_clusters max_features split® splitl split2 mean_test_rmse
15 6 43460 43919 44748 44042
15 8 44132 44075 45010 44406
15 10 44374 44286 45316 44659
10 6 44683 44655 45657 44999
10 6 44683 44655 45657 44999




The Short Way
(that Many People Actually Use)

Split into only training data + validation data
Train on training data, evaluate on validation data

Report cross-validation performance
— possibly also training performance

Why is this used?

— might not be enough data to create held-out test set

— you cannot trust that authors did not peek at test data
anyway =P



Outline for Feb 8

 Decision Tree introduction



Real-World Examples

* Medical diagnostics

Journal of Medical Systems
MEDICAL ' A
SYSTEMS October 2002, Volume 26, Issue 5, pp 445-463 | Cite as
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Authors Authors and affiliations

Vili Podgorelec ], Peter Kokol, Bruno Stiglic, lvan Rozman

LA - P . . . o e
MW  Decision Trees: An Overview and Their Use in Medicine

* Use decision trees to interpret another ML
algorithm (SVMs)

Machine-learning-assisted materials
discovery using failed experiments

Paul Raccuglia, Katherine C. Elbert, Philip D. F. Adler, Casey Falk, Malia B. Wenny, Aurelio Mollo,
Matthias Zeller, Sorelle A. Friedler , Joshua Schrier ™ & Alexander J. Norquist

Nature 533, 73-76 (05 May 2016)  Download Citation

Optional Reading!



Decision Tree example (tennis data)

Outlook
Sunny Rain
Humidity Wind
Overcast
High Normal Strong Weak
No Yes Yes No Yes

Each internal node: test one feature
Each branch from node: selects one value of the feature

Each leaf node: predict y



Decision Tree example (tennis data)

depth =0
Sunny Rain
Humidity Wind
Overcast
High Normal Strong Weak
No Yes Yes No Yes

Key term: depth



Decision Tree example (tennis data)

depth =1
Outlook
Sunny RAin
Overcast
High Normal Strong Weak
No Yes No Yes

Key term: depth



Decision Tree example (tennis data)

Sunny

Outlook

depth = 2

Humidity

Stron

Key term: depth



Decision Tree example (tennis data)

Outlook
Sunny Rain
Humidity Wind
Overcast
High Normal Strong Weak
No Yes Yes No Yes

Outlook | Temp | Humidity | Wind

(test example) x = Rain Hot High Strong Yored = No



Can also consider continuous features

x?_, 1
1
6 X2S3
1 1 1
0
4 0
0 1
| ° 0 1
0 1
0 1
0 —
0 2 4 6 x1




Can also consider continuous features

False True

Example by: Eric Eaton



Decision Tree pros/cons

Very interpretable! Easy to say why we made a
classification (can point to which features)

Compact representation and fast predictions

Can be brittle (not looking at each example
holistically)

Featurization and implementation difficulties



Check-in: work individually for a few minutes

1. Match the decision tree component on the left with its corresponding data component on the
right.

e internal nodes class labels
e branches feature names
e leaves feature values

2. Say I am trying to predict if a student will like a course (+) or dislike it (-). One of the features
is the time of day the course is offered. If I just choose this one feature and build a decision tree,
here is how the training examples cluster at the leaves:

time

morning evening

after|noon

(a) How would you classify a new example with value evening for the feature time?

(b) What is the overall training error if I use the majority class label at each leaf?

3. If a decision tree is overfitting, is the depth more likely to be low or high?



Check-in

1) e internal nodes — class labels

° branclles—/__/-'/—feature names

e leaves — feature values
time

2) (a) + —
(b) 5/14

evening

after|noon

3) high



Outline for Feb 8

* ID3 algorithm



ID3 Decision Tree algorithm (1986)

e Select feature that “best” informs label

prediction (i.e. y)

* Divide: partition data into branches based on

their value at this feature

* Conquer: recurse on
each partition

Optional reading

Machine Learning 1: 81-106, 1986
© 1986 Kluwer Academic Publishers, Boston — Manufactured in The Netherlands

Induction of Decision Trees

Key words: classification, induction, decision trees, information theory, knowledge acquisition, expert
sssssss




Top-Down decision tree algorithm

/ Dataset (X,y)
Features

<
<4

MakeSubtree(D, F)
if stopping criteria met
make a leaf node N For us: use majority label
determine class label/probabilities for N« (breakties arbitrarily)




Top-Down decision tree algorithm

/ Dataset (X,y)
Features

<
<

MakeSubtree(D, F)
if stopping criteria met
make a leaf node N For us: use majority label
determine class label/probabilities for N« (break ties arbitrarily)
else
make an internal node N
S = FindBestFeature(D, F)
for each outcome k of S
D« = subset of instances that have outcome k
N.child[k] = MakeSubtree(Dk,F-S)
return subtree rooted at N

Why don’t we want to use this feature again?



Design choice: stopping criteria

. All the data points in our partition have the
same label

. No more features remain to split on

. No features are informative about the label

i.e. all have same remaining features but there is still label heterogeneity

. Reached (user specified) max depth in the tree

For our Lab 3 implementation



Additional base case options

e Stop when leaf label reaches a certain fraction
(i.e. 95% “yes”, 5% “no”

* Set a minimum number of examples in leaf
(i.e. if we have a 2-1 split, stop)



Outline for Feb 8

e Handout 6



1. First, what is n (number of data points)? What is p (number of features)? Given the training

Handout 6

data and decision tree shown below, what is the classification error on this data?

Day | Outlook Temperature Humidity Wind | PlayTennis (y)
x; Sunny Hot High Weak No
T Sunny Hot High Strong No
x3 | Overcast Hot High Weak Yes
T4 Rain Mild High Weak Yes
x5 Rain Cool Normal  Weak Yes
Tg Rain Cool Normal Strong No
x7 | Overcast Cool Normal Strong Yes
s Sunny Mild High Weak No
g Sunny Cool Normal  Weak Yes
10 Rain Mild Normal  Weak Yes
11 Sunny Mild Normal Strong Yes
x12 | Overcast Mild High Strong Yes

x13 | Overcast Hot Normal  Weak Yes

T14 Rain Mild High Strong No




Handout 6

2. On the tree below, the children of each node divide the training data into partitions. Label each
node (both internal nodes and leaves) with the counts of “No” and “Yes” labels based on the
partition. For example, the counts for the node labeled Outlook would be [5, 9].

Outlook
Sunny Rain
Humidity Wind
Overcast
High Normal Strong Weak
No Yes Yes No Yes

3. What if we had restricted the tree’s depth to be 17 What would the tree look like and what would

be the classification error?



Handout 6

Day | Outlook Temperature Humidity Wind | PlayTennis (y)
T Sunny Hot High Weak No
Ty | Sunny Hot High Strong No
x3 | Overcast Hot High Weak Yes
Ty Rain Mild High Weak Yes
s Rain Cool Normal  Weak Yes
Tg Rain Cool Normal Strong No
x7 | Overcast Cool Normal Strong Yes
Ty Sunny Mild High Weak No
Ty | Sunny Cool Normal  Weak Yes
1 Rain Mild Normal  Weak Yes
x;; | Sunny Mild Normal Strong Yes
x5 | Overcast Mild High Strong Yes
x;3 | Overcast Hot Normal  Weak Yes Outlook
T4 Rain Mild High Strong No
Sunny Rain
Humidity Wind
Overcast
No Yes Yes No Yes



Handout 6: continuous features

4. For the dataset below, the label y € {0,1}. What is n? What is p? Devise a decision tree for
this data that perfectly classifies the given examples. Internal node labels should be of the form
“r; < a”, where a is some constant.

1
6
1 ! 1
0
4 0
0 1
| ° 0 1
0 1
0 1
0 ——
0 2 4 6 x1

5. Repeat Question (2) for this decision tree (i.e. label each node with the “0” and “1” counts.)



Outline for Feb 8

* Implementation suggestions



Recursive algorithm: Partition data structure

Day | Outlook Temperature Humidity Wind | PlayTennis (y)
T Sunny Hot High Weak No
Ty | Sunny Hot High  Strong No
x3 | Overcast Hot High Weak Yes
Ty Rain Mild High Weak Yes
x5 Rain Cool Normal — Weak Yes
T Rain Cool Normal  Strong No
@7 | Overcast Cool Normal  Strong Yes
xg | Sunny Mild High Weak No
Ty | Sunny Cool Normal  Weak Yes
T Rain Mild Normal  Weak Yes
x;, | Sunny Mild Normal  Strong Yes
1o | Overcast Mild High Strong Yes
@3 | Overcast Hot Normal = Weak Yes
x14 | Rain Mild High  Strong No




Recursive algorithm: Partition data structure

T _Sunny Hot High  Weak No
zy | Sunny Hot High  Strong No
Tg | Sunny Mild High Weak No
Ty | Sunny Cool Normal  Weak Yes
1, | Sunny Mild Normal _ Strong | Yes

Day | Outlook Temperature Humidity Wind | PlayTennis
T Sunny Hot High Weak No
Ty | Sunny Hot High  Strong No
3 | Overcast Hot High Weak Yes
Ty Rain Mild High Weak Yes
Ts Rain Cool Normal  Weak Yes
Tg Rain Cool Normal  Strong No

_x7_| Overcast ool Normal _ Stron Yes
g | Sunny Mild High Weak No
Ty | Sunny Cool Normal = Weak Yes

_xjo | Ramn Mild Normal _ Weak Yes
x;, | Sunny Mild Normal  Strong Yes
1o | Overcast Mild High Strong Yes
@3 | Overcast Hot Normal  Weak Yes
x14 | Rain Mild High  Strong No




Recursive algorithm: Partition data structure

x, | Sunny Hot High  Weak No
Zy | Sunny Hot High  Strong No
Tg | Sunny Mild High Weak No
xg | Sunny Cool Normal  Weak Yes

Day | Outlook Temperature Humidity Wind | PlayTennis (y) £y, | Sunny Mild Normal  Strong | Ve

xz; | Sunny Hot High Weak No -

o | Sunny Hot High  Strong No

x3 | Overcast Hot High Weak Yes

Ty Rain Mild High Weak Yes

25 | Rain Cool Normal - Weak Yes z3 | Overcast Hot High ~ Weak Yes

Tg Rain Cool Normal Strﬂ No

x7 | Overcast Cool Normal  Strong Yes T ‘ Overcast C(?Ol N01.rma1 Strong Yes

Ty | ounny Mild Migh  Weak o x5 | Overcast Mild High  Strong Yes

@y | Sunny Cool Normal  Weak Yes x5 | Overcast Hot Normal  Weak Yes

T Rain Mild Normal  Weak Yes

;| Sunny Mild Normal  Strong Yes

1o | Overcast Mild High Strong Yes

Z12 | Overcast Hot Normal  Weak Yes

x14 | Rain Mild High  Strong No




Recursive algorithm: Partition data structure

x, | Sunny Hot High  Weak No
Zy | Sunny Hot High  Strong No
Ty Sunny Mild High Weak No
Ty | Sunny Cool Normal  Weak Yes
Day | Outlook Temperature Humidity Wind | PlayTennis (y) £y, | Sunny Mild Normal  Strong | Ve
T Sunny Hot High Weak No B
Ty | Sunny Hot High  Strong No
T3 &ercast Hot High Weak Yes
Ty Rain Mild High Weak Yes
@5 | Rain Cool Normal  Weak Yes T3 \ Overcast Hot High  Weak Yes
_Zg | Rain Cool Normal _ Strong No
x7 | Overcast Cool Normal  Strong Yes T ‘ Overcast C(?Ol NOI_‘mal Strong Yes
x5 | Sunny Mild High Weak No 219 | Overcast Mild High Strong Yes
_zo | Sunny Cool Normal  Weak Yes L&y Overcast Hot Normal ~ Weak Yes
T Rain Mild Normal  Weak Yes
m_ll_Sunny Mild Normal gtrong Yes
1o | Overcast Mild High Strong Yes —
x| Overcast Hot Normal  Weak Yes x4 Rain Mild High Weak Yes
T4 Rain Mild High  Strong No x5 Rain Cool Normal  Weak Yes
Tg Rain Cool Normal  Strong No
z1o | Rain Mild Normal = Weak Yes
214 | Rain Mild High  Strong No




Partition class

class Example:

def __init__ (self, features, label):
"""Helper class (like a struct) that stores info about each example."""
# dictionary. key=feature name: value=feature value for this example
self.features = features
self.label = label # in {-1, 1}

class Partition:

def __init__ (self, data, F):
"""Store information about a dataset"""
self.data = data # list of examples
# dictionary. key=feature name: value=set of possible values
self.F = F
self.n = len(self.data)



-

Comedy  Short Adamson Yes How to choose
m2 Animated Short Lasseter No No the best featu re?
m3 Drama Medium Adamson No Yes Entro py |
m4 Animated Long Lasseter Yes No
m5 Comedy Long Lasseter Yes No
m6 Drama Medium  Singer Yes Yes
m7 Animated Short Singer No Yes
m8 Comedy Long Adamson Yes Yes
m9 Drama Medium  Lasseter No Yes
P(Li = yes) = 2/3
H(Li) = 0.92
H(Li | T) = 0.61 Director

H(Li | Le) = 0.61

|H(Li | D) = 0.36| MINENTROPY

H(Li | F) = 0.85

| Famous actors | Liked? |
No

Gain(Li, T) = 0.92-0.61=0.31
Galn(Ll Le) =0.92-0.61=0.31
'Gain(Li, D) = 0.92-0.36 =0.56| MAX INFO GAIN
Gam(Ll, F) = 0.92-0.85=0.07

Start of the tree




Implementation Suggestions

e Think back to trees in data structures

* Distinguish between data (X,y) and options for
data (values for each feature, classes for y)



Implementation Suggestions

e Make sure you can accommodate more than
two children (i.e. not a binary tree)

e Make sure your prediction/classification
algorithm is recursive

e You can parse the feature name to figure out
continuous/discrete and how to classify

age<=44.5




Continuous Features

(do this for the TRAIN only!)

1) Sort examples based on given feature

w

/7 7 8

Y N N

10 12
Y Y

2) Different label with same feature value, collapse to “None’

3
Y

7 8
None N

10 12
Y Y

x v

10 Y )

7 Y Y

8 N

3 Y

7 N 2

12 Y Y
Y

1) Whenever label changes, make a feature (use avg)

L

)

)

2
Y

3
Y

7 8
None N

10 12
Y Y

|

!

X<=7.5

l

\

X<

=5

X<=9

)



