Evaluation of Models and Sources of Error in the ML Pipeline
CS 360 Machine Learning
Week 3, Day 1

February 6, 2024

Contents

1 Evaluation of models 1
1.1 Loss functions o s 2
1.2 The Bias-Variance Tradeoff e 3
1.3 Cross-validation s 4

2 Sources of error in a machine learning pipeline 4
2.1 Fairness measures v ot e e e e e e e 4
2.2 Sources of error and model cards 6

1 Evaluation of models

As a quick review, we’ve seen that the performance on training data overestimates the accuracy in reality.
That’s why we use the held aside test data, something the model didn’t see, to evaluate the model. Ideally
the training data and test data should both be drawn from the same distribution. In deployment, that data
should ideally also be drawn from the same distribution. In reality, we don’t know what these distributions
are, but our goal is to think about how well the training data and testing data distributions match. Looking
at an example, we see that as we increase the model complexity, the training accuracy keeps going up, but
at some point the testing accuracy starts to go down.

Let’s try to make this description more concrete. Consider a hypothesis (model) h with training error
errory qin(h) and the error over all possible datasets denoted errorp(h). This evaluation over all possible
datasets is hypothetical. We can now say that a hypothesis h overfits the training data if there exists
another hypothesis A’ such that:

errory qin (h) < error.qin(h’) AND

errorp(h) > errorp (k')

Here we imagine we have a fixed amount of data, though in the real world we might consider an ongoing
collection of data and associated ongoing refinement of the model. (The process of continually incorporating
such data into the training and testing process is tricky and requires being careful not to train on test
data; one common way to handle this is to retrain in batches.)

(CS360: Machine Learning 1 EVALUATION OF MODELS

1.1 Loss functions

We’ve considered common notions of accuracy and error, here we formalize them.

Definition 1 (Zero-one loss).

Uy, h) = {0 Yy=9 1)

1 otherwise

Definition 2 (Squared loss).
Uy, 9) = (y = 9)*

Zero-one loss is simple accuracy - is the prediction right for binary of multi-class prediction. For
regression, we’ve also considered squared loss. We could also consider the absolute loss for regression, but
it’s not differentiable everywhere, so we can’t always make use of it.

These are the functions we want to use when we want to minimize our error. We think about the
overall problem we’re solving in the following way. Given a loss function ¢, a sample of data D from an
unknown distribution of all data I, and a hypothesis space H = {h|h : X — Y'}. Our goal is to find a
function f(X) — y that minimizes the error over D with respect to £. We call this the generalization error.

We assume that the distributions are drawn i.i.d, meaning that they are drawn independently and
identically distributed from all of the data; all data points are similarly probable to occur. (There are
exceptions to this assumption such as time series data, structured data, and active learning).

The generalization error is thus defined as the expected value:

Egey) |0 f(@))]

where the first part of the loss function represents the true values while the second part is the predicted
values.

Assuming that we’re considering a regression problem, this means that y = f(z) + ¢ where f is some
underlying true model of the real phenomena that created the data we’re considering and ¢ is some amount
of error from that true model, which is assumed to have a mean of 0. Both f and e are unknown, while y
is assumed to be observable. In a regression problem we’re trying to predict § = f () based on a training
process.

Our goal is to minimize the expected value of the loss, as described above. Our training data is only a
sample from the true distribution, which sets up a dilemma in minimizing based on the true distribution.
What are the sources of error here; why might learning fail?

Inductive bias is when we made assumptions at the beginning that led us down a poor path. Preferring
one classification over another, for example, when we know what the data looks like and have a preconceived
hypothesis that makes use of our background knowledge or assumptions, is known as inductive bias. When
picking an algorithm for a dataset, we need to be aware of this bias — we might not know what the right
solution is.

We might also have other issues that lead to errors, such as noise in the training data (e.g. typos,
scientific measurement noise, etc.). The available features may be insufficient to model the phenomena
we’re interested, such as an x-ray that doesn’t capture the medical issues of interest. There may be a
mismatch between what you want to learn and the data you actually have. There may also be an issue
where even a “correct” prediction is up for interpretation. A learning algorithm may also not be able to
accurately model the data. We come back to these concerns later in this class.

First, we ask: what about sources of errors that are fundamental to the learning process itself?

Sara Mathieson, Sorelle Friedler Page 2 of 6

(CS360: Machine Learning 1 EVALUATION OF MODELS

1.2 The Bias-Variance Tradeoff

You may have seen this as a concept in CS 260, but we’ll make it more formal here. We’ll consider the
expected value of the mean-squared error (MSE) of a regression problem, i.e., the loss function:

Uy, 9) = (y —9)°

(Squaring it makes the loss function differentiable.) If I want to find the expected value of this loss
E[(y — 9)?] T know that y in my mental model (described above) is f(x) + ¢, and by definition § = f(z),
which gives:

El(y - 9)°] = E[f(z) + & — f(2))?

When you square this and rearrange terms you end up with:

= E[f(z) - f(@)]® + Var(e)

TReducibIe Error Tlrreducible Error

where Var(e) is the variance of the data error term ¢ and we have assumed that its mean is 0. The left
part is known as the reducible error and represents the error terms due to the choice of model, while the
right part of the above is known as irreducible error and includes the error inherent to the data.

Using the trick of adding and subtracting the same thing (so we’re adding zero but it allows us to break
apart the terms), we get:

= E[f(x) ~ E[f(@)] + Elf(@)] - f(x)] +Var(e)

After squaring and rearranging terms, this gives:

= (Blf@) - f@) * + E[(f@) - Eli@])] + Vare)
[Bias [Variance. [rreducible Error

Recall that this is an expected value over different possible training datasets, and our goal is to have a
model close to the “true” model. The resulting part on the left is known as bias in a statistical sense and
to the right of that is the model’s variance. Note that the variance only depends on the trained model. I’d
like it to be small, so that the phenomena is predictably estimated from whatever training set I have.

What about bias — do we want it to be low or high? We also want this to be low. Recall that we want
the overall error to be low. As you increase the flexibility (complexity) of the model, the bias goes down,
but the variance may go up. This is known as the bias-variance tradeoff:

= bias(f) 2+ Var(f) + Var(e)

This tradeoff has three components: 1) the bias, which we can’t measure, 2) the variance of the model,
which we can measure, and 3) the variance of the noise, which we usually also don’t know. These are
the three components that make up the total error, and there’s a limit to how much we can reduce the
overall error. As flexibility (model complexity) goes up, bias will go down, but variance will go up. As you
become less flexible, the bias will go up, but the variance will go down. Remember that the variance we’re
considering is how different the model is when you consider different training data. I.e., we’re considering
what would happen if we happened to be given a different training data sampled from the true distribution
D and how that might increase the error of a resulting trained model. This helps to measure how much
your model is overfitting to the noise. Note that there’s also the noise term that can’t be removed - this
assumes that there is some measurement error or other noise that’s inherent to the data.

Sara Mathieson, Sorelle Friedler Page 3 of 6

(CS360: Machine Learning 2 SOURCES OF ERROR IN A MACHINE LEARNING PIPELINE

1.3 Cross-validation

How can we make the general approach to machine learning somewhat better? One general approach is to
split your data into 70% training data, 10% development data (validation data), and 20% test data. For
each possible setting of our hyperparameters, we train a model using that setting of hyperparameters on the
training data, and compute the model’s error rate on the development data. From the above collection of
models, choose the one that achieved the lowest error rate on the development data. Finally, do evaluation
of the model on the test data.

In practice, unfortunately this process might be repeated many times if that final evaluation step on
the test data doesn’t get results that you like. But the problem with this is that you’ve now used the test
data as part of your model selection. This violates our running edict: don’t touch the test data!

One question / concern that arises that might lead to this type of error is: why did we choose that
specific “split” of the data into training and validation sets? In principle, we might think, we should do
this multiple times since performance may be different for each split.

We could use k-fold cross-validation (e.g., k& = 10) to handle this concern. In this case, we randomly
partition the full dataset of n instances into k disjoint subsets. This is a way of using all of the training
data to also do validation — note that the test data is still separated and held out for later testing. In
this case, for each partition, we learn on the training data and validate on the validation partition. We do
this for each of the different partitions and report the summary statistics (e.g., accuracy) over all of these
splits, with each hyperparameter choice evaluated using the summary statistic computed by fixing the
hyperparameter and evaluating across all splits. We would then choose the model with the best validation
performance, chosen over all these hyperparameter choices, to run on the test data. This allows us to
compare models in a more robust way. Note that k£ will be chosen based on how much data there is,
so that the training and validation sets have enough data to be effective; often people choose £ = 10 in
practice, but it’s better to choose this based on the size of your data.

2 Sources of error in a machine learning pipeline

Accuracy and other traditional error measures focus on evaluating a trained model against the test data,
using confusion matrices and associated error measures. However, recent critiques of deployed models have
considered the potential societal impact when models are deployed in ways that directly impact people
and suggest the need for evaluation beyond these traditional approaches.

2.1 Fairness measures

As you may have discussed in CS 106, a criminal risk assessment model was created which identified
defendants as low or high risk for recidivism based on a label measuring rearrest of individuals within
2 years. It was found, in an article by Propublica, that this risk assessment essentially gave the benefit
of the doubt to white defendants—it was more likely to label them low-risk even if they went on to
reoffend—while it did the opposite with Black defendants, labeling them high-risk even when they didn’t
reoffend. Key to this analysis was a table showing the rates at which white and Black defendants received
misclassifications—an analysis similar to, but not quite the same as, a confusion matrix analysis.

In another case, a prominent academic article and accompanying project by Joy Boulamwini and Timnit
Gebru demonstrated that commercially deployed gender classification algorithms based on facial photos
were more likely to work incorrectly for darker skinned women than for white people regardless of gender
or for men regardless of skin color. Again, the analysis rested on misclassification rates per demographic
group, such as the true positive rate for darker skinned women.

Sara Mathieson, Sorelle Friedler Page 4 of 6

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
http://gendershades.org/

(CS360: Machine Learning 2 SOURCES OF ERROR IN A MACHINE LEARNING PIPELINE

When considering the potential civil rights impact of machine learning models on employment, the
U.S. Equal Employment Opportunity Commission has put out technical assistance making it clear that
civil rights laws still apply when models or other algorithms are used in a hiring context. This includes
a general rule-of-thumb known as the “four-fifths rule” that compares selection rates per demographic
group to determine if they are substantially different from each other. It is calculated based on the per-
demographic group predictions.

These measures, designed to identify potential discrimination in the outcomes of machine learning
models, can all be calculated based on modified confusion matrices that are calculated per demographic
group. While a general confusion matrix includes the counts for each item in a test set, a confusion matrix
for a fairness analysis includes only those examples from a specific demographic group in that matrix.

Table 1: Confusion matrices for an example where a model is selecting people to be recommended to a
hiring committee based on existing employee data and an analysis is being done to determine whether men
are advantaged in the process. Top: classifications of examples that represent men. Bottom: classifications
of examples that represent non-men.

Predicted Class
Don’t Hire DO Hire
Wasn’t Hired T Nien TP, en

WAS Hired FNpen TPen

Test Data Label

Predicted Class
Don’t Hire DO Hire
Wasn’t Hired TNnon FPnon

‘WAS Hired FNnon Tpnon

Test Data Label

Based on these confusion matrices, we can calculate the four-fifths ratio:

rate of hiring for non-men _ 4

rate of hiring for men — 5

In an ideal world, these rates would be equal, but the “four-fifths” part of the rule comes from the idea
that there can be some leeway for less than exactly equal rates. In terms of our confusion matrices, this is

calculated as:
(FPyon+TPoon)
total non-men

(FPen+TPen)
total men

Note that this ratio is calculated without considering the test data label, i.e., entirely based on the predic-
tions. In a hiring context, we can see how this might make sense. Consider a company that was historically
discriminatory—it likely uses its historical employment data as the training and test data. In this case,
matching new predicted classifications to historical data and attempting to equalize those based on his-
torical demographic groups may not be desired, and could even be discriminatory. The four-fifths rule
considers only the columns of these per-demographic group confusion matrices.

When considering what it means to be “fair” in the case of misclassification, we may again want to
see that various error measures are equal when calculated for each demographic group as usual based on
the separated confusion matrices. For example, we may want to see that the ratio of true positive rates is

Sara Mathieson, Sorelle Friedler Page 5 of 6

https://www.eeoc.gov/laws/guidance/select-issues-assessing-adverse-impact-software-algorithms-and-artificial

(CS360: Machine Learning 2 SOURCES OF ERROR IN A MACHINE LEARNING PIPELINE

equal to 1.

true positive rate for non-men 1

true positive rate for men
TPnon
TPn0n+FNn0n

TPmen
TPme’rL+FNmen

Or we might want to consider false positive rates, or another error measure.

=1

false positive rate for non-men

false positive rate for men

Once we’ve computed the per-demographic group confusion matrices, most fairness measures are ratios or
differences of various entries.

2.2 Sources of error and model cards

The traditional machine learning pipeline when considered in deployment first creates a model based on
training data and a chosen model type and then deploys the model in the real world when given an
example and generates a prediction. However, in a real-world deployment scenario we need to consider the
assumptions made throughout the pipeline. Each of these assumptions could be potential sources of error.

One key assumption is the reliance on machine learning in the first place—it’s important to interrogate
whether machine learning is even the right approach to solve a problem! Perhaps there’s a better solution
with different technology or outside the bounds of computer science entirely.

Another assumption that can commonly lead to errors in the real world is that the trained model is
appropriate to the given real world task. Conditions, which lead to training and test data, could change in
the real world or the model could be deployed in a new context that doesn’t match the conditions it was
designed for.

In order to identify these and other assumptions and hopefully prevent deployment errors, one approach
is to state these assumptions explicitly. Model cards are one approach to transparency reporting about
machine learning models that has been widely adopted by industry (including examples from Google,
Hugging Face, Amazon, and Jigsaw). Key to this approach is the explicit identification and reporting of
intended uses of the model based on its training data and process as well as uses that are known to be
out-of-scope.

Sara Mathieson, Sorelle Friedler Page 6 of 6

https://arxiv.org/abs/1810.03993
https://modelcards.withgoogle.com/
https://huggingface.co/docs/hub/en/model-cards
https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards.html
https://developers.perspectiveapi.com/s/about-the-api-model-cards?language=en_US

	Evaluation of models
	Loss functions
	The Bias-Variance Tradeoff
	Cross-validation

	Sources of error in a machine learning pipeline
	Fairness measures
	Sources of error and model cards

