
CS 360: Machine Learning

Sara Mathieson, Sorelle Friedler
Spring 2024

Sit somewhere new!

Admin
• EVERYONE: Sign in again

• Sorelle office hours Thursday: 4-5pm in H110

• Lab 1 was due last night

• Lab 2 due Thursday Feb 8
– Don’t wait til the last minute!

• TA hour schedule on Piazza

Outline for Jan 30

• Python style and implementation notes

• Overfitting

• K-nearest neighbors

• KD Trees
Logistic Regression and Gradient Descent Review:

Moved to discussion of softmax

Outline for Jan 30

• Python style and implementation notes

• Overfitting

• K-nearest neighbors

• KD Trees

Python style
• Decompose code into natural functions
• Avoid global variables (sometimes useful)
• Include a file header with purpose, author,

and date
• Include headers for each function
• No lines over 80 chars
• Variable names implicitly show type
• Include line breaks and comments!

• “Snake-case” not “camel-case”
– linearSearch
– linear_search

• Alphabetize imports and don’t use “*”
– from numpy import *
– import numpy as np

Python style

Python style examples

Structure of main and “helper” functions

Main (driver)

Helper
Function1

Helper
Function

2

Helper
Function

3

Sub-
helper

A

Sub-
helper

B

Sub-
helper

C

Structure of main and “helper” functions

Reminder: steps of top-down-design (TDD)

1) Design a high-level main function that captures the basic idea of
the program.

Reminder: steps of top-down-design (TDD)

1) Design a high-level main function that captures the basic idea of
the program.

2) As you're writing/designing main, think about which details can
be abstracted into small tasks. Make names for these functions
and write their signatures below main.

Reminder: steps of top-down-design (TDD)

1) Design a high-level main function that captures the basic idea of
the program.

2) As you're writing/designing main, think about which details can
be abstracted into small tasks. Make names for these functions
and write their signatures below main.

3) “Stub” out the functions. This means that they should work and
return the correct type so that your code runs, but they don’t do
the correct task yet. For example, if a function should return a
list, you can return []. Or if it returns a boolean, you can return
False.

Reminder: steps of top-down-design (TDD)

1) Design a high-level main function that captures the basic idea of
the program.

2) As you're writing/designing main, think about which details can
be abstracted into small tasks. Make names for these functions
and write their signatures below main.

3) “Stub” out the functions. This means that they should work and
return the correct type so that your code runs, but they don’t do
the correct task yet. For example, if a function should return a
list, you can return []. Or if it returns a boolean, you can return
False.

4) Iterate on your design until you have a working main and stubbed
out functions. Then start implementing the functions, starting
from the “bottom up”.

Reminder: steps of top-down-design (TDD)

Outline for Jan 30

• Python style and implementation notes

• Overfitting

• K-nearest neighbors

• KD Trees

Overfitting with a high-degree polynomial

Geron: Figure 1-23

Overfitting

• “Overfitting happens when the model is too
complex relative to the amount and noisiness of
the training data.” (Geron Chap 1)

• Solutions
– Reduce the complexity of the model
– Get more training data
– Reduce noise in the training data

Geron: Chap 1

• Underfitting: “had the opportunity to learn
something but didn’t” (Duame)

• Overfitting: memorized individual training
examples (fit to noise) and can’t generalize

Terminology

Under and over-fitting (CS260 example)

Geron: Figure 1-23

Underfitting

Overfitting

“Just right”

Common pattern observed in
machine learning

model complexitylow high

er
ro

r

training data
testing data

Validation data
• Is it wrong to use the test data to determine

the model complexity?
• Yes!

Geron: Figure 1-25

Outline for Jan 30

• Python style and implementation notes

• Overfitting

• K-nearest neighbors

• KD Trees

Nearest Neighbors

Why would we be interested in finding a point's
nearest neighbor in a set of points?

• Fill in missing data
• Prediction unknown values (labels, output, etc)
• subroutine for some clustering methods

Slide: modified from Sorelle Friedler

K-nearest neighbors creates implicit decision boundaries

Figure 2.14 from ISL book, KNN with two classes (C=2), and K=3

Decision boundary: separates regions of the feature space that
would be classified as positive or negative (or multiclass)

Voronoi Diagrams
Nearest neighbor queries in 2D

Images: wikipedia, Slide: modified from Sorelle Friedler

Euclidean distance Manhattan distance

query point

Board work + Handout 3, Q1-2

Board work + Handout 3, Q1-2

Comparison of decision boundaries

Figure 2.16 from ISL book (dashed line is “ideal” boundary)

Comparison of decision boundaries

Figure 2.16 from ISL book (dashed line is “ideal” boundary)

Overfitting Underfitting

Calculating the nearest neighbor

• What is the "naïve" approach?

• How long does it take to find the nearest
neighbor of a point? In 2D? In d-dimensions?

• How could we do better?

Slide: modified from Sorelle Friedler

Outline for Jan 30

• Python style and implementation notes

• Overfitting

• K-nearest neighbors

• KD Trees

Making a kd-tree

1, 3

5, 44, 4

2, 7

3, 1

9, 2

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Slide: modified from Sorelle Friedler

Making a kd-tree

1, 3

5, 44, 4

2, 7

3, 1

9, 2

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

4,4

Slide: modified from Sorelle Friedler

Making a kd-tree

1, 3

5, 44, 4

2, 7

3, 1

9, 2

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

4,4

1,3

3,1 2,7

Slide: modified from Sorelle Friedler

Making a kd-tree

1, 3

5, 44, 4

2, 7

3, 1

9, 2

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

4,4

1,3 5,4

3,1 2,7 9,2

Slide: modified from Sorelle Friedler

