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Sit somewhere new!



Admin
• EVERYONE: Sign in again
 
• Sorelle office hours Thursday: 4-5pm in H110

• Lab 1 was due last night

• Lab 2 due Thursday Feb 8
– Don’t wait til the last minute!

• TA hour schedule on Piazza



Outline for Jan 30

• Python style and implementation notes

• Overfitting

• K-nearest neighbors

• KD Trees
Logistic Regression and Gradient Descent Review:

Moved to discussion of softmax
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Python style
• Decompose code into natural functions
• Avoid global variables (sometimes useful)
• Include a file header with purpose, author, 

and date
• Include headers for each function
• No lines over 80 chars
• Variable names implicitly show type
• Include line breaks and comments!



• “Snake-case” not “camel-case”
– linearSearch
– linear_search

• Alphabetize imports and don’t use “*”
– from numpy import *
– import numpy as np

Python style



Python style examples



Structure of main and “helper” functions
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Structure of main and “helper” functions





Reminder: steps of top-down-design (TDD)



1) Design a high-level main function that captures the basic idea of 
the program.
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1) Design a high-level main function that captures the basic idea of 
the program.

2) As you're writing/designing main, think about which details can 
be abstracted into small tasks. Make names for these functions 
and write their signatures below main.

3)  “Stub” out the functions. This means that they should work and 
return the correct type so that your code runs, but they don’t do 
the correct task yet. For example, if a function should return a 
list, you can return []. Or if it returns a boolean, you can return 
False.

4) Iterate on your design until you have a working main and stubbed 
out functions. Then start implementing the functions, starting 
from the “bottom up”.

Reminder: steps of top-down-design (TDD)
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Overfitting with a high-degree polynomial

Geron: Figure 1-23



Overfitting

• “Overfitting happens when the model is too 
complex relative to the amount and noisiness of 
the training data.” (Geron Chap 1)

• Solutions
– Reduce the complexity of the model
– Get more training data
– Reduce noise in the training data

Geron: Chap 1



• Underfitting: “had the opportunity to learn 
something but didn’t” (Duame)

• Overfitting: memorized individual training 
examples (fit to noise) and can’t generalize

Terminology



Under and over-fitting (CS260 example)

Geron: Figure 1-23

Underfitting

Overfitting

“Just right”



Common pattern observed in 
machine learning

model complexitylow high
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Validation data
• Is it wrong to use the test data to determine 

the model complexity?
• Yes!

Geron: Figure 1-25
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Nearest Neighbors

Why would we be interested in finding a point's 
nearest neighbor in a set of points?

• Fill in missing data
• Prediction unknown values (labels, output, etc)
• subroutine for some clustering methods

Slide: modified from Sorelle Friedler



K-nearest neighbors creates implicit decision boundaries

Figure 2.14 from ISL book, KNN with two classes (C=2), and K=3

Decision boundary: separates regions of the feature space that 
would be classified as positive or negative (or multiclass)



Voronoi Diagrams
Nearest neighbor queries in 2D

Images: wikipedia, Slide: modified from Sorelle Friedler

Euclidean distance Manhattan distance

query point



Board work + Handout 3, Q1-2



Board work + Handout 3, Q1-2



Comparison of decision boundaries

Figure 2.16 from ISL book (dashed line is “ideal” boundary)



Comparison of decision boundaries

Figure 2.16 from ISL book (dashed line is “ideal” boundary)

Overfitting Underfitting



Calculating the nearest neighbor

• What is the "naïve" approach?

• How long does it take to find the nearest 
neighbor of a point?  In 2D?  In d-dimensions?

• How could we do better?

Slide: modified from Sorelle Friedler
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Making a kd-tree
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