
Review of CS 260 Concepts
CS 360 Machine Learning

Week 1, Day 1

January 23, 2024

Contents

1 What is machine learning? 1

2 Classification review 2
2.1 Terminology . 2
2.2 Evaluation metrics for binary classification . 3

1 What is machine learning?

“Machine Learning is the study of methods for programming computers to learn.” - Tom Diet-
terich

“Machine Learning is about predicting the future based on the past.” - Hal Daume III

“Machine learning seeks to answer the question: ‘How can we build computer systems that
automatically improve with experience, and what are the fundamental laws that govern all
learning processes’ ” - Tom Mitchell

From the above, the phrase “automatically improve with experience” is very central to machine learning,
where usually we improve by using data.

Another view on machine learning considers that in traditional programming we would have data and
a program and get the output, while in machine learning we have the data and the output and generate
the program that can be reused in other settings.

Machine learning is related to statistics, data mining, and psychology of learning, but it is also impor-
tantly distinct. While statistics is more about understanding the phenomenon that generated the data,
data mining is more about finding patterns and helping humans understand (as opposed to prediction),
and psychology focuses on helping humans understand the mechanisms behind how humans learn, machine
learning is a separate field.

Why would we want machine learning?

1. In cases where there are no human experts for a task, for example predicting failure points for new
machines or other predictions on previously unseen data points.

2. When human experts can’t explain their expertise, for example how to understand what a hand-
written number look like, machine learning can help us automate this expertise even without the
understanding behind it.

1

CS360: Machine Learning 2 CLASSIFICATION REVIEW

3. In cases where phenomena change rapidly, for example adapting to new conditions such as spammers
that get better at beating a filter, we can use machine learning to keep up with this speed of change.

4. When the goal is to customize an experience for each user, for example programs that adapt to user’s
speech, machine learning can be trained to do this automatically.

Machine learning underlies much of the modern web, current innovations in science, and both important
and everyday decisions about people.

2 Classification review

A traditional approach (see Figure 1-1 from the textbook) to studying a problem of creating a spam filter
is that we look at a lot of emails that users have flagged as spam, we study those and try to find patterns
(e.g., emails that use a lot of capitals) and create hand-written rules to detect spam. We would try out
those rules, see if they work, and if they do we would launch our spam filter. One key problem with this
approach is that the spammers can figure out what rules you’ve used, and they’ll avoid those rules, leading
the spam emails to get through the filter again. Additionally, the process of writing rules is tedious (has
a large cost in programmer time) and there are likely cases of spam that the programmer might not catch
with these hand-curated rules.

A more modern machine learning approach (textbook Figure 1-2) would collect data and train a model
to better capture the previously seen data. However, there’s still a concern that spammers can learn to
adapt to these rules. An adaptive machine learning approach (Figure 1-3) would be able to handle even
this last problem.

In the best case, we might additionally be able to learn something from what the machine learning
system learns from the data (Figure 1-4). This is very true in biology, for example we might be able
to correctly classify people based on their genetic risk for a disease using a machine learning classifier,
but being able to better understand the mechanisms behind the classification might allow us to better
understand the genuine mechanisms behind the disease.

Another view of a machine learning pipeline (Duame, Figure 1.1) is that you use your training data,
pick a learning algorithm which gives you a function that goes from features to your labels, and then under
your test examples you’re able to predict those labels. Using these stages of this machine learning pipeline,
we now unpack these terms further.

2.1 Terminology

Suppose that Alice takes a machine learning course for a semester, but the exam is on the history of
pottery. Alternatively, suppose that all exam questions are exactly the same as homework question. Are
either of these good tests of Alice’s learning? No!

Generalization is a key to machine learning, where the test data is similar, but a bit different, from the
training data. Transfer learning can allow you to tackle test datasets that are more different. Throughout,
a general machine learning goal is to be able to apply your training data to your test data.

The process of training a machine learning model usually involves the program learning from many
examples. In a supervised setting we know the “answer” or label and are using this to learn. The resulting
output of the training process is known as a model. In the process of testing, a trained model predicts the
output (label) for new examples without using their labels. Key to this process is the expectation that
the test data is not examined during the training process - never look at the test data!. (One caveat
to this view of machine learning is that there are some machine learning problems that do not decompose
into training and testing.)

Sara Mathieson, Sorelle Friedler Page 2 of 5

CS360: Machine Learning 2 CLASSIFICATION REVIEW

In supervised learning we have information about the output or response variable (label) that can be
used to create (train) a model. This can be easier for the computer to learn the function between input
and output. In unsupervised learning the data is unlabeled; there is no output or class information. There
may not even be a function to learn!

One common machine learning task is regression – in this case the output or response variable is
continuous (see textbook Figure 1-6). One example of a regression problem is modeling house price as a
function of size, year, location, etc. Another common style of machine learning is classification, where the
goal is to distinguish two or more classes or categories (this is the setting where there is a discrete output
variable). For example, one classification problem is, “is the given photo a bagel or a dog?” There’s a label
you’re trying to predict (bagel or dog) and there can be one or more classes (in this case, two). Often, the
goal in classification is to distinguish between potentially similar objects.

The common subclass of classification problems when there are two classes is known as binary classi-
fication; these problems often have Boolean True and False values as the outcome possibilities. In binary
classification there are two classes that may have different numbers of examples in the training data and
in reality. When the sizes of these classes are roughly the same, these problems are known as balanced or
symmetric. Problems where there are more examples of one class than another are known as imbalanced
or asymmetric. Some examples of asymmetric problems include computing the probability that an email
message is spam given the words of the email, determining the probability of Trisomy 21 (Down Syndrome)
given the amount of sequencing of each chromosome, determining whether a credit card interaction is fraud
given the timing and type of transactions, and deciding who to hire for a job or admit to college. In all
of these problems most examples are not of a specific type, for example most emails are not spam, but a
small number are flagged and identified as different, e.g., spam emails.

2.2 Evaluation metrics for binary classification

When we evaluate the testing results of trained binary classification models, a key way of representing the
results which allows us to examine and compute evaluation metrics to determine whether the resulting
model is good, is a confusion matrix. A confusion matrix displays the results of the testing process based
on class type and is generally organized so that the rows represent the true class and the columns represent
the predicted class of each data point. The cells of the matrix give the number of examples from the testing
data that fell into each category (e.g., the number of examples that were from the positive class but were
predicted as the negative class, known as the false negatives).

Table 1: General confusion matrix

Predicted Class
Negative Positive

True Class
Negative True negative (TN) False positive (FP)
Positive False negative (FN) True positive (TP)

Usually we have features ~x and labels y ∈ {0, 1}. We often use p for the number of features, i.e.,
length(~x) = p. The number of training examples is n, so our training matrix is n × p. 1 is often used to
indicate the flagging class, e.g., that the person was hired, the email was spam, etc., i.e., it’s the thing with
fewer training examples or a smaller class in the case of an asymmetric binary classification problem.

Suppose that we have 70 examples that are not spam and we predicted are not spam, we had 30
examples that were not spam and we said were spam, 10 where they were truly spam but we didn’t catch
them, and 50 that were spam and we correctly identified as spam. These are shown in the confusion matrix

Sara Mathieson, Sorelle Friedler Page 3 of 5

CS360: Machine Learning 2 CLASSIFICATION REVIEW

Table 2: Example confusion matrix

Predicted Spam
0 1

True Spam
0 70 30
1 10 50

above. One thing to note about this confusion matrix is that the total number of examples, the sums of
the rows, is fixed. Our algorithm could predict them in different ways, so the sum of the columns can vary
based on where we set our thresholds for the classifier and other algorithmic choices. We can tune the
algorithm to be more or less sensitive.

One overall evaluation of the algorithm we could make based on the above confusion matrix is its
accuracy, defined as:

Definition 1 (Accuracy).

accuracy =
number correct

total
=

1

n

∑
I(yi = ŷi) (1)

Where yi is the true label for example i, ŷi is the predicted label for example i, and I is the indicator
function which returns 1 when the given value is True and 0 otherwise. In other words, I(yi = ŷi) returns
1, and is thus included in the summation, when the predicted and true values for an example i match. It
allows you to count all the cases that are correct and skip the cases that are incorrect. Looking back at
the confusion matrix, we can see that this is the sum of the diagonal terms (and this would remain true in
a larger matrix); the error is all the off-diagonal terms.

If you have binary classification should you ever get a result where the accuracy is less than 50%? No!
If you did, you could just flip your outcome.

We can normalize confusion matrices. If so, we want the rows to sum to 1. Why do this with the
rows and not the columns? Because the rows have a fixed sum, and the columns do not. We can do this
normalization by adding up the rows and dividing by the total for each row. So in our earlier example we
get:

Table 3: Example normalized confusion matrix

0 1

0 0.7 0.3
1 0.17 0.83

Which one do you like better? One thing that can be hidden in the normalized version is the total
sample size, while that’s very visible from the non-normalized confusion matrix. What else have you lost
in the normalized version? You’ve lost visibility into the asymmetry; how different are the class sizes?
But what have you gained? You can directly read off the false positive and false negative rates and it
provides somewhat more interpretable metrics directly. There are pros and cons to both types of confusion
matrices, and it’s important not to hide information that’s necessary in real world settings.

Looking back at our general confusion matrix, we also now consider the sums of the rows and columns:
the rows indicate the total number of true examples of each class (with N indicating the total number of

Sara Mathieson, Sorelle Friedler Page 4 of 5

CS360: Machine Learning 2 CLASSIFICATION REVIEW

true negatives and P indicating the total number of true positives), while the columns give the number of
predictions of each class (with N∗ indicating what we said was negative while P∗ indicates what we said
was positive or “flagged”).

Table 4: General confusion matrix with row and column sums

Predicted Class
Negative Positive

True Class
Negative True negative (TN) False positive (FP) N
Positive False negative (FN) True positive (TP) P

N* P*

In general, we want the numbers on the diagonal to be high and the off-diagonal error to be low. We
can use this confusion matrix to calculate further important evaluation metrics to quantify this goal.

Definition 2 (Error).

error =
FN + FP

TN + FP + FN + TP
=

FN + FP

N + P
(2)

Note that accuracy = 1− error.

Definition 3 (Precision).

precision =
TP

FP + TP
=

TP

P ∗ (3)

Definition 4 (Recall (True Positive Rate)).

recall (true positive rate) =
TP

FN + TP
=

TP

P
(4)

Definition 5 (False Positive Rate (FPR)).

false positive rate =
FP

TN + FP
=

FP

N
(5)

In a ROC curve we have the false positive rate on the x-axis and the true positive rate on the y-axis.
We want the true positive rate to be high and the false positive rate to be low.

Sara Mathieson, Sorelle Friedler Page 5 of 5

