
CS 106
INTRODUCTION TO
DATA STRUCTURES

SPRING 2020

PROF. SARA MATHIESON
HAVERFORD COLLEGE

ADMIN

•  Welcome prospective students!

•  Lab 7 posted (due next Friday)

•  Video on (if your internet will accommodate that)

•  Let me know if you will be missing class or lab

•  Lab this week: same plan (will start at 9am)

• Remember to sign-in on the google sheet

Remind me to RECORD

REVISED TA/OFFICE HOURS
Sunday 7-9pm (Juvia)

Monday 8-midnight (Steve)

Tuesday 11:30-12:30pm (Lizzie)

Tuesday 4:30-6pm (Sara)

Wednesday 8-midnight (Steve)

Thursday 11:30-12:30pm (Lizzie)

Thursday 9-11pm (Will)

Friday 8-10pm (Gareth)

Saturday 4-6pm (Will)

Saturday 8-10pm (Gareth)

Today/Tomorrow

FINAL PROJECT

More details to come, but loosely a “choose your own
adventure” style

1)  Finish Lab 7 (with a few additional analyses)
2)  Huffman encoding part of Lab 6 (worth small

amount of extra credit)
3)  Quadtree graphics application (worth a slightly

larger amount of extra credit)

•  Quick sort

•  Radix sort

•  Merge sort

APR 16 OUTLINE

•  Quick sort

•  Radix sort

•  Merge sort

APR 16 OUTLINE

QUICK SORT: HIGH LEVEL

 x

QUICK SORT: HIGH LEVEL

 x

 x

 L G E

QUICK SORT: HIGH LEVEL

 x

 x

 x

 L G E

QUICK SORT: HOW TO
CHOOSE THE PIVOT?

•  First element

•  Last element
•  Random element

•  Median of 3 random elements

Regardless of what we do, it is convenient to swap the pivot
to the beginning or end so all elements can be moved relative
to the pivot.

QUICKSORT EXAMPLE

8 5 3 1 9 7 2
i j

8 < 2

QUICKSORT EXAMPLE

5 3 1 9 7
i j

8 < 2

8 2

QUICKSORT EXAMPLE

5 3 1 9 7
i j

8 < 2

8 2

QUICKSORT EXAMPLE

2 5 3 1 9 7 8
i j

8 < 2
2 < 8

QUICKSORT EXAMPLE

2 5 3 1 9 7 8
i j

8 < 2
2 < 8
5 < 8

QUICKSORT EXAMPLE

2 5 3 1 9 7 8
i j

8 < 2
2 < 8
5 < 8
3 < 8

QUICKSORT EXAMPLE

2 5 3 1 9 7 8
i j

8 < 2
2 < 8
5 < 8
3 < 8
1 < 8

QUICKSORT EXAMPLE

2 5 3 1 9 7 8
i j

8 < 2
2 < 8
5 < 8
3 < 8
1 < 8
9 < 8

QUICKSORT EXAMPLE

2 5 3 1 7
i j

8 < 2
2 < 8
5 < 8
3 < 8
1 < 8
9 < 8

8 9

QUICKSORT EXAMPLE

2 5 3 1 7
i j

8 < 2
2 < 8
5 < 8
3 < 8
1 < 8
9 < 8

8 9

QUICKSORT EXAMPLE

2 5 3 1 8 7 9
i j

8 < 2
2 < 8
5 < 8
3 < 8
1 < 8
9 < 8

QUICKSORT EXAMPLE

2 5 3 1 8 7 9
i j

8 < 2
2 < 8
5 < 8
3 < 8
1 < 8
9 < 8
8 < 9

QUICKSORT EXAMPLE

2 5 3 1 8 7 9
i j

8 < 2
2 < 8
5 < 8
3 < 8
1 < 8
9 < 8
8 < 9
8 < 7

QUICKSORT EXAMPLE

2 5 3 1 7 8 9
i j

8 < 2
2 < 8
5 < 8
3 < 8
1 < 8
9 < 8
8 < 9
8 < 7

QUICKSORT EXAMPLE

2 5 3 1 7 8 9
i == j

8 < 2
2 < 8
5 < 8
3 < 8
1 < 8
9 < 8
8 < 9
8 < 7
7 < 8

IMPLEMENTING PARTITION

QUICKSORT (LAST TIME)

Yes! 1 ends up being a bad pivot (in the left recursive call) because it
doesn’t end up in the middle.

Yes! We only rely on swaps (in-place operation) and keeping track of high
and low indices.

QUICKSORT (GROUP EXERCISE)

EXPECTED RUNTIME

WORST-CASE RUNTIME

QUICKSORT – WORST
CASE COMPLEXITY
What’s the worst case for quicksort? I.e., when will it be
forced to do a lot of comparisons?

When the pivot item picked in each round is the smallest (or
largest) item, then we have to do n (n – 1) / 2 comparisons.

The good news is: if the pivot is picked randomly, this is
unlikely to happen!

The expected case analysis of this algorithm turns out to be
O(n log n) !

DIVIDE-AND-CONQUER
Divide – the problem (input) into smaller pieces

Conquer – solve each piece individually, usually recursively
Combine – the piecewise solutions into a global solution

Usually involves recursion

Analysis usually involves solving recurrence relations

•  Quick sort

•  Radix sort

•  Merge sort

APR 16 OUTLINE

RADIX SORT EXAMPLE
Idea: if we have integers or some other more “discrete” objects, we can

sort them into buckets to improve runtime

Radix sort columns (high to low here)

1 2 3 4 5
1 1 0 0 0
0 0 1 0 0
1 1 0 0 1
0 0 1 1 0
0 1 0 0 0

1 2 3 4 5
1 1 0 0 0
0 0 1 0 0
1 1 0 0 1
0 0 1 1 0
0 1 0 0 0

2 1 3 4 5
1 1 0 0 0
0 0 1 0 0
1 1 0 0 1
0 0 1 1 0
1 0 0 0 0

Radix sort columns (high to low here)

1 2 3 4 5
1 1 0 0 0
0 0 1 0 0
1 1 0 0 1
0 0 1 1 0
0 1 0 0 0

2 1 3 4 5
1 1 0 0 0
0 0 1 0 0
1 1 0 0 1
0 0 1 1 0
1 0 0 0 0

3 4 2 1 5
0 0 1 1 0
1 0 0 0 0
0 0 1 1 1
1 1 0 0 0
0 0 1 0 0

Radix sort columns (high to low here)

1 2 3 4 5
1 1 0 0 0
0 0 1 0 0
1 1 0 0 1
0 0 1 1 0
0 1 0 0 0

2 1 3 4 5
1 1 0 0 0
0 0 1 0 0
1 1 0 0 1
0 0 1 1 0
1 0 0 0 0

3 4 2 1 5
0 0 1 1 0
1 0 0 0 0
0 0 1 1 1
1 1 0 0 0
0 0 1 0 0

2 1 5 3 4
1 1 0 0 0
0 0 0 1 0
1 1 1 0 0
0 0 0 1 1
1 0 0 0 0

Radix sort columns (high to low here)

1 2 3 4 5
1 1 0 0 0
0 0 1 0 0
1 1 0 0 1
0 0 1 1 0
0 1 0 0 0

2 1 3 4 5
1 1 0 0 0
0 0 1 0 0
1 1 0 0 1
0 0 1 1 0
1 0 0 0 0

3 4 2 1 5
0 0 1 1 0
1 0 0 0 0
0 0 1 1 1
1 1 0 0 0
0 0 1 0 0

2 1 5 3 4
1 1 0 0 0
0 0 0 1 0
1 1 1 0 0
0 0 0 1 1
1 0 0 0 0

3 2 1 5 4
0 1 1 0 0
1 0 0 0 0
0 1 1 1 0
1 0 0 0 1
0 1 0 0 0

Radix sort columns (high to low here)

1 2 3 4 5
1 1 0 0 0
0 0 1 0 0
1 1 0 0 1
0 0 1 1 0
0 1 0 0 0

2 1 3 4 5
1 1 0 0 0
0 0 1 0 0
1 1 0 0 1
0 0 1 1 0
1 0 0 0 0

3 4 2 1 5
0 0 1 1 0
1 0 0 0 0
0 0 1 1 1
1 1 0 0 0
0 0 1 0 0

2 1 5 3 4
1 1 0 0 0
0 0 0 1 0
1 1 1 0 0
0 0 0 1 1
1 0 0 0 0

3 2 1 5 4
0 1 1 0 0
1 0 0 0 0
0 1 1 1 0
1 0 0 0 1
0 1 0 0 0

2 1 3 5 4
1 1 0 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
1 0 0 0 0

Radix sort columns (high to low here)

RADIX SORT RUNTIME
(EXERCISE)

n = number of numbers we want to sort

k = number of digits in each number
c = number of bins (2 for binary, 10 for decimal, etc)

•  Quick sort

•  Radix sort

•  Merge sort

APR 16 OUTLINE

Next time!

