
CS 106
INTRODUCTION TO
DATA STRUCTURES

SPRING 2020

PROF. SARA MATHIESON
HAVERFORD COLLEGE

ADMIN

•  Welcome prospective students!

•  Lab 6 due TODAY
•  Lab 7 posted TODAY (due next Thursday)

•  Video on (if your internet will accommodate that)

•  Let me know if you will be missing class or lab

•  Lab 3 graded – note many did not finish. I will down-

weight Lab 3 given a positive trajectory

Remind me to RECORD

REVISED TA/OFFICE HOURS
Sunday 7-9pm (Juvia)

Monday 8-midnight (Steve)

Tuesday 11:30-12:30pm (Lizzie)

Tuesday 4:30-6pm (Sara)

Wednesday 8-9pm (Steve)

Thursday 11:30-12:30pm (Lizzie)

Thursday 9-11pm (Will)

Friday 8-10pm (Gareth)

Saturday 4-6pm (Will)

Saturday 8-10pm (Gareth)

Today/Tomorrow

•  Finish hash tables

• Applications: document classification, spellcheck
• Other probing strategies

•  Deduplication

•  Sorting
• Quicksort
• Radix sort

APR 14 OUTLINE

•  Finish hash tables

• Applications: document classification, spellcheck
• Other probing strategies

•  Deduplication

•  Sorting
• Quicksort
• Radix sort

APR 14 OUTLINE

GROUP EXERCISE (LAST TIME)

1)  Word frequencies: use a hash table to count the frequencies
of each word in a document. This is very useful for document
classification, which is (in part) how Google search works!

2)  Spellchecker: assume you have a HashSet of “correctly”
spelled words. Given a word from the user, how could you tell
if it is spelled correctly? How could you go about suggesting
close alternatives if it’s misspelled?

Think of the high-level algorithm first, then pseudocode. Assume you can easily
read in words from the user or from a document.

DOCUMENT CLASSIFICATION
Goal: count word frequencies in a document using a dictionary

DOCUMENT CLASSIFICATION
Goal: count word frequencies in a document using a dictionary

Key is a String (word)
Value is an Integer (count)

DOCUMENT CLASSIFICATION
Goal: count word frequencies in a document using a dictionary

“put” is like our “insert”
Increment the previous count by 1 Will this work?

Press “yes” or “no” button!

DOCUMENT CLASSIFICATION
Goal: count word frequencies in a document using a dictionary

“get” will throw an error if word is not in the dictionary
Need to initialize new words (not the only way)

ANOTHER WAY: IF/ELSE

DOCUMENT CLASSIFICATION
Goal: count word frequencies in a document using a dictionary

Output:

Example classification: cooking/recipe

DOCUMENT CLASSIFICATION
Goal: count word frequencies in a document using a dictionary

Output:

Example classification: cooking/recipe
Other ideas: omit frequent words, focus on nouns/verbs

SPELLCHECKER
Goal: suggest alternative words the user might have meant

SPELLCHECKER

One idea: go through all substitutions and see if they are in the dictionary
 alouy
 blouy
 clouy
 dlouy
 elouy
 …
 floup
 flouq
 flour ****

Goal: suggest alternative words the user might have meant

•  Finish hash tables

• Applications: document classification, spellcheck
• Other probing strategies

•  Deduplication

•  Sorting
• Quicksort
• Radix sort

APR 14 OUTLINE

PROBING DISTANCE

DOUBLE HASHING

https://www.youtube.com/watch?v=npw4s1QTmPg

Extra info: great talk on dictionaries in Python!

DOUBLE HASHING EXAMPLE

k h (k) d (k) Probe Indices
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

0 1 2 3 4 5 6 7 8 9 10 11 12

Double hashing:
• N = 13
• h(k) = k % 13
• d(k) = 7 – k % 7

Insert: 18, 41, 22, 44,
59, 32, 31, 73

Q: Do you record the index where you put each item?
A: Unfortunately no – this is not part of what is stored in the hash table, so we have
to follow the same probing procedure to “lookup” which is why it is so important that
we have few collisions and a good strategy for dealing with them when they do occur.

Q: What if there is one spot left but you never find it with this strategy?
A: Make sure moduli (i.e. 13 and 7) are relatively prime (and just
generally both prime), but otherwise this could definitely be an issue!

DOUBLE HASHING EXAMPLE

k h (k) d (k) Probe Indices
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

Double hashing:
• N = 13
• h(k) = k % 13
• d(k) = 7 – k % 7

Insert: 18, 41, 22, 44,
59, 32, 31, 73

PERFORMANCE ANALYSIS

HASHTABLE SIZE

•  Finish hash tables

• Applications: document classification, spellcheck
• Other probing strategies

•  Deduplication

•  Sorting
• Quicksort
• Radix sort

APR 14 OUTLINE

DATA DEDUPLICATION
Data sets can contain multiple entries that are the same even
when they shouldn’t.

When this happens it:

takes up extra space

causes algorithms operating on the data to take more time

potentially causes data errors, when one copy of an entry is
modified and the other isn’t

DATA DEDUPLICATION
Data sets can contain multiple entries that are the same even
when they shouldn’t.

Goals:

1.  determine programmatically when two entries are
duplicates

2.  identify and remove duplicate entries from the data set

DATA DEDUPLICATION
Data sets can contain multiple entries that are the same even
when they shouldn’t.

Goals:

1.  determine programmatically when two entries are
duplicates

2.  identify and remove duplicate entries from the data set

Lab 7 application: voter registration

DETERMINING EQUALITY

Good deduplication requires a function that can accurately
check equality between two entries.

Ideally the equality function:

returns True if two entries are the same

is robust to small errors (e.g., spelling mistakes)

returns False if any part of the entry indicates the entries are
actually different

This is necessarily customized per data set!

IDENTIFYING DUPLICATES

There are a number of ways to identify duplicates in a data set:

1.  compare all pairs
2.  use a dictionary

3.  sort the items

Which is the right method to use? Determine this by:

1.  timing the different methods
2.  formal complexity

You’ll determine complexity via timing in Lab 7.

IDENTIFYING DUPLICATES –
ALL PAIRS

We can identify duplicates by comparing each item in the data
set to each other item in the data set.

When, based on our method, two items are found to be equal,
and they aren’t the same item in memory, a duplicate was found.

Class Class Name Semester
CMSC
H106B

Introduction to
Data Structures

Spring
2020

CMSC
H106B

Introduction to
Data Structures

Spring
2020

CMSC
H106B

Introduction to
Data Structures

Spring
2019

CMSC
H105A

Introduction to
Computer Science

Fall 2016

Class Class Name Semester
CMSC
H106B

Introduction to
Data Structures

Spring
2020

CMSC
H106B

Introduction to
Data Structures

Spring
2020

CMSC
H106B

Introduction to
Data Structures

Spring
2019

CMSC
H105A

Introduction to
Computer Science

Fall 2016

IDENTIFYING DUPLICATES –
DICTIONARIES

We can identify duplicates by putting each item into a dictionary
using a key that is unique only for each item that is unique. We
could count the number of occurrences as the value or check for
presence/absence.

Key Value

CMSC
H106B 3

CMSC
H105A 1

Class Class Name Semester
CMSC
H106B

Introduction to
Data Structures

Spring
2020

CMSC
H106B

Introduction to
Data Structures

Spring
2020

CMSC
H106B

Introduction to
Data Structures

Spring
2019

CMSC
H105A

Introduction to
Computer Science

Fall 2016

DEDUPLICATION WITH
SORTING
How can sorting help us perform deduplication?

If we sort all the items so that duplicate items are next to
each other in the list, then we only need to compare
neighboring items to see if they’re the same!

•  Finish hash tables

• Applications: document classification, spellcheck
• Other probing strategies

•  Deduplication

•  Sorting
• Quicksort
• Radix sort

APR 14 OUTLINE

HOW IMPORTANT IS SORTING IN COMPUTER
SCIENCE? THIS IMPORTANT.

https://www.youtube.com/watch?v=k4RRi_ntQc8

SORTING
Sorting is used as a component of many
algorithms, and is useful in its own right.

Some applications:

• Sort a list of names.
• Organize a music library.
• Display Google PageRank results.
• Find the median.
•  Identify statistical outliers.
• Find duplicates in a mailing list.
• Supply chain management.
• Book recommendations on Amazon.
• Load balancing on a parallel computer.

COMPARISON METHODS

There are many sorting algorithms! Most rely on a method
(or operator) that can order two items. For example, the
compareTo method from the Comparable interface.

If an operator isn’t built-in, than a good key can often be
created so that a comparison can be done from the key, or a
new comparison function can be created.

BUBBLE SORT
Given a list of items and the ability to compare them:

start at the beginning of the list – compare the first two items
and put the “smaller” one first

keep doing this with an item and the one after it in the list
until you reach the end of the list

start back at the beginning of the list and repeat

stop when you do a full pass through the list with no repeats

BUBBLE SORT -
COMPLEXITY
What is the input size for this problem?

We’ll call the number of items in the list n.

What’s the right unit of work for this problem? I.e., what
thing (like multiplications) do we want to count?

We’ll count the number of comparisons between two items.

BUBBLE SORT – WORST CASE EXAMPLE

How long does this method of sorting take in terms of this input
size in the worst case?

Example (swaps indicated by ->)
[5,4,3,2,1] -> [4,5,3,2,1] -> [4,3,5,2,1] -> [4,3,2,5,1] ->

BUBBLE SORT – WORST CASE EXAMPLE

How long does this method of sorting take in terms of this input
size in the worst case?

Example (swaps indicated by ->)
[5,4,3,2,1] -> [4,5,3,2,1] -> [4,3,5,2,1] -> [4,3,2,5,1] ->
[4,3,2,1,5] -> [3,4,2,1,5] -> [3,2,4,1,5] ->

BUBBLE SORT – WORST CASE EXAMPLE

How long does this method of sorting take in terms of this input
size in the worst case?

Example (swaps indicated by ->)
[5,4,3,2,1] -> [4,5,3,2,1] -> [4,3,5,2,1] -> [4,3,2,5,1] ->
[4,3,2,1,5] -> [3,4,2,1,5] -> [3,2,4,1,5] ->
[3,2,1,4,5] -> [2,3,1,4,5] ->

BUBBLE SORT – WORST CASE EXAMPLE

How long does this method of sorting take in terms of this input
size in the worst case?

Example (swaps indicated by ->)
[5,4,3,2,1] -> [4,5,3,2,1] -> [4,3,5,2,1] -> [4,3,2,5,1] ->
[4,3,2,1,5] -> [3,4,2,1,5] -> [3,2,4,1,5] ->
[3,2,1,4,5] -> [2,3,1,4,5] ->
[2,1,3,4,5] ->

BUBBLE SORT – WORST CASE EXAMPLE

How long does this method of sorting take in terms of this input
size in the worst case?

Example (swaps indicated by ->)
[5,4,3,2,1] -> [4,5,3,2,1] -> [4,3,5,2,1] -> [4,3,2,5,1] ->
[4,3,2,1,5] -> [3,4,2,1,5] -> [3,2,4,1,5] ->
[3,2,1,4,5] -> [2,3,1,4,5] ->
[2,1,3,4,5] ->
[1,2,3,4,5]

BUBBLE SORT – WORST CASE EXAMPLE

How long does this method of sorting take in terms of this input
size in the worst case?

Example (swaps indicated by ->)
[5,4,3,2,1] -> [4,5,3,2,1] -> [4,3,5,2,1] -> [4,3,2,5,1] ->
[4,3,2,1,5] -> [3,4,2,1,5] -> [3,2,4,1,5] ->
[3,2,1,4,5] -> [2,3,1,4,5] ->
[2,1,3,4,5] ->
[1,2,3,4,5]

How many comparisons were done (in terms of n)?
n (n-1) = O(n2)
(Number of swaps: (n-1) + (n-2) + (n-3) + … + 1 = n (n – 1) / 2)

WE HAVE ALREADY SEEN SORTING

1)  Insertion sort (Lab 3)
2)  Heap sort (Lab 6)

This week we’ll cover a few other common sorting algorithms

QUICKSORT

QUICKSORT (GROUP EXERCISE)

QUICKSORT (GROUP EXERCISE)

Yes! 1 ends up being a bad pivot (in the left recursive call) because it
doesn’t end up in the middle.

Yes! We only rely on swaps (in-place operation) and keeping track of high
and low indices.

