
CS 106
INTRODUCTION TO
DATA STRUCTURES

SPRING 2020

PROF. SARA MATHIESON
HAVERFORD COLLEGE

ADMIN

•  Lab 6 due Sunday Tuesday

•  Welcome prospective students!

•  May need to do random breakout rooms since many
people are not signed into Zoom

Remind me to RECORD

REVISED TA/OFFICE HOURS
Sunday 7-9pm (Juvia)

Monday 8-midnight (Steve)

Tuesday 11:30-12:30pm (Lizzie)

Tuesday 4:30-6pm (Sara)

Wednesday 8-midnight (Steve)

Thursday 11:30-12:30pm (Lizzie)

Thursday 9-11pm (Will)

Friday 8-10pm (Gareth)

Saturday 4-6pm (Will)

Saturday 8-10pm (Gareth)

Today/Tomorrow

•  Heap sort recap and example

•  Motivation for hash maps

•  Hash functions

•  Implementing a hash table

APR 7 OUTLINE

•  Heap sort recap and example

•  Motivation for hash maps

•  Hash functions

•  Implementing a hash table

APR 7 OUTLINE

IN-PLACE SORTING

In-place sorting algorithm: we do not create a new data structure,
we instead sort the elements within their existing data structure

•  Cons: destroys the original order, which may have been
important

•  Pros: very efficient in terms of space

IN-PLACE SORTING

In-place sorting algorithm: we do not create a new data structure,
we instead sort the elements within their existing data structure

•  Cons: destroys the original order, which may have been
important

•  Pros: very efficient in terms of space

Out-of-place sorting algorithm: returns a new data structure with

the original data sorted
•  Cons: space inefficient
•  Pros: preserves original order

IN-PLACE SORTING

In-place sorting algorithm: we do not create a new data structure,
we instead sort the elements within their existing data structure

•  Cons: destroys the original order, which may have been
important

•  Pros: very efficient in terms of space

Out-of-place sorting algorithm: returns a new data structure with

the original data sorted
•  Cons: space inefficient
•  Pros: preserves original order

Heap Sort can be implemented either way, but we will cover the in-

place version now

HEAP SORT (IN PLACE WITH ARRAY)

Phase I: unsorted array -> heap
 for i = 0, 1, … n-1:
 bubble up element at index i until arr[0…i] form a heap

HEAP SORT (IN PLACE WITH ARRAY)

Phase I: unsorted array -> heap
 for i = 0, 1, … n-1:
 bubble up element at index i until arr[0…i] form a heap

Phase II: heap -> sorted array

 for i = n-1, n-2, … 0:
 swap(0, i) // 0 is the root index
 bubble down so arr[0…i] are still a heap

HEAP SORT EXAMPLE: PHASE I
5 1 7 2 3 8 4 6 Phase I: unsorted array -> heap

(Below are two different stages in Phase 1)

unsorted

HEAP SORT EXAMPLE: PHASE I
5 1 7 2 3 8 4 6 Phase I: unsorted array -> heap

(Below are two different stages in Phase 1)

After processing i=4:

7 3 5 1 2 8 4 6

unsorted

unsorted heap

7	

3	 5

1	 2	

HEAP SORT EXAMPLE: PHASE I
5 1 7 2 3 8 4 6 Phase I: unsorted array -> heap

(Below are two different stages in Phase 1)

After processing i=4:

After processing i=n-1 (end of Phase I):

7 3 5 1 2 8 4 6

8	

6	 7

3	 2	 5	 4	

1	

unsorted

unsorted heap

8 6 7 3 2 5 4 1

heap

7	

3	 5

1	 2	

HEAP SORT EXAMPLE: PHASE I

5 1 7 2 3 8 4 6

Phase I: unsorted array -> heap

7 3 5 1 2 8 4 6

8	

6	 7

3	 2	 5	 4	

1	

8 6 7 3 2 5 4 1

7 1 5 2 3 8 4 6

7 2 5 1 3 8 4 6

8 3 7 1 2 5 4 6

8 3 7 1 2 5 4 6

5 1 7 2 3 8 4 6

Phase II: heap -> sorted array

HEAP SORT EXAMPLE: PHASE II
8 6 7 3 2 5 4 1

8	

6	 7

3	 2	 5	 4	

1	

RUNTIME KEY IDEA:
TREE HEIGHT

8	

6	 7

3	 2	 5	 4	

1	

•  Heap sort recap and example

•  Motivation for hash maps

•  Hash functions

•  Implementing a hash table

APR 7 OUTLINE

MAP
A searchable collection of key-value pairs

Multiple entries with the same key are not allowed

Also known as dictionaries, hash tables, etc

EXAMPLES OF MAPS

•  A book in a library has a physical position (like an index in an array)
•  It would be fast to find if you knew this position, but…

Image from: http://aetherforce.com/who-really-burned-the-library-of-alexandria-by-preston-chesser/

EXAMPLES OF MAPS

•  A book in a library has a physical position (like an index in an array)
•  It would be fast to find if you knew this position, but…
•  You shouldn’t need to already know that when you walk into the

library – you can look it up!

Image from: http://aetherforce.com/who-really-burned-the-library-of-alexandria-by-preston-chesser/

EXAMPLES OF MAPS

•  A book in a library has a physical position (like an index in an array)
•  It would be fast to find if you knew this position, but…
•  You shouldn’t need to already know that when you walk into the

library – you can look it up!
•  Look up a book in the library by title

• Key: title
• Value: physical book

Image from: http://aetherforce.com/who-really-burned-the-library-of-alexandria-by-preston-chesser/

Key idea: hash function
maps key to position

EXAMPLES OF MAPS

•  Look up students by name or ID number

•  Key: student name or ID number
•  Value: class schedule, transcript, dorm, dean, etc

•  Look up by Social Security Number

•  Key: SSN
•  Value: tax records, voting data, etc

•  User accounts

•  Key: email or username
•  Value: all account data (tweets, friends, pictures, etc)

BIOLOGY EXAMPLE
Look up individuals in a pedigree or other dataset

•  Key: ID number (i.e. “b”)

•  Value: DNA data

n m o k

i j

f c

6 8 7

c d e

5 4

b a

1 3 2

“pq”: 8 paths

“l”:
2 paths

“gh”: 1 path

B

MAP ADT
(MANY WAYS OF DEFINING)
lookup(k): if the map M has an entry with key k, return its

associated value; else, return null

MAP ADT
(MANY WAYS OF DEFINING)
lookup(k): if the map M has an entry with key k, return its

associated value; else, return null

insert(k, v): insert entry (k, v) into the map M; if key k is
not already in M, then return null; else, replace old value with v
and return old value associated with k

MAP ADT
(MANY WAYS OF DEFINING)
lookup(k): if the map M has an entry with key k, return its

associated value; else, return null

insert(k, v): insert entry (k, v) into the map M; if key k is
not already in M, then return null; else, replace old value with v
and return old value associated with k

remove(k): if the map M has an entry with key k, remove it from
M and return its associated value; else, return null

MAP ADT
(MANY WAYS OF DEFINING)
lookup(k): if the map M has an entry with key k, return its

associated value; else, return null

insert(k, v): insert entry (k, v) into the map M; if key k is
not already in M, then return null; else, replace old value with v
and return old value associated with k

remove(k): if the map M has an entry with key k, remove it from
M and return its associated value; else, return null

size(), isEmpty()

entrySet(): return an iterable collection of the entries in M

keySet(): return an iterable collection of the keys in M

values(): return an iterable collection of the values in M

•  Heap sort recap and example

•  Motivation for hash maps

•  Hash functions

•  Implementing a hash table

APR 7 OUTLINE

HASH TABLES
Maps are an abstract data type. Hash tables are one way (the
most common way) to implement maps.

We need to know how maps are implemented in order to
determine how long it takes to perform each of the main
operations:

•  inserting or changing a value at a given key

•  getting a value at a given key

HASH TABLES
Suppose we have a function that can map a key to a memory
location (a space in our “library”).

To insert / change a key / value pair we:

1.  Calculate the result of the hash function on the key.

2.  Find that location in memory and insert / change the
value.

We can do the same thing to get a value given a key.

HASH TABLES – A SKETCH OF
THE DETAILS

There are many details we need to get right for this to work:

1.  The space in memory needs to be not too big and not too
small, and the hash function needs to map into that specific
amount of space.

2.  Given the limited space, we might map different keys to the
same location. We need a plan for this.

3.  Hash functions need to be easy to compute and distribute the
keys uniformly across the memory, or we’ll have problem #2 a
lot.

If we do this all correctly, then we can insert, change, and get
key / value pairs very quickly!

HASH FUNCTIONS
AND TABLES
A hash function ℎ maps a key to integers in a fixed interval

[0,𝑁−1]

ℎ(𝑥)= 𝑥 % 𝑁 is such a function for integers
ℎ(𝑥) is the hash value of key 𝑥

A hash table is an array of size 𝑁

•  associated hash function ℎ
•  item (𝑘, 𝑣) is stored at index ℎ(𝑘)

EXAMPLE

A hash table storing entries
as (SSN, Name), where
SSN is a nine-digit positive
integer

Use an array of size 𝑁 = 10000
and the hash function
ℎ(𝑥) = last 4 digits of 𝑥

∅

∅

∅

∅

0
1
2
3
4

9997
9998
9999

…

451-229-0004

981-101-0002

200-751-9998

025-612-0001

COLLISION HANDLING 1:
CHAINING
A hash function does not guarantee one-to-one mapping

– no hash function does
One option: when more than one key hashes to the

same index, we have a “bucket”
Each index holds a collection of entries

COLLISION HANDLING 1:
CHAINING
A hash function does not guarantee one-to-one mapping

– no hash function does
One option: when more than one key hashes to the

same index, we have a “bucket”
Each index holds a collection of entries

0 1 2 3 4 5 6 7 8 9 10

(1,D) (25,C)

(3,F)

(14,Z)

(39,C)

(6,A) (7,Q)

Colliding item is put in a
different cell

Linear probing: place

the colliding item in
the next (circularly)
available table cell

Colliding items cluster

together

Example: ℎ(𝑥)=𝑥%13
insert 18, 41, 22, 44, 59,

32, 31, 73

0 1 2 3 4 5 6 7 8 9 10 11 12

 41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

COLLISION HANDLING 2:
PROBING

GROUP EXERCISE

•  Heap sort recap and example

•  Motivation for hash maps

•  Hash functions

•  Implementing a hash table

APR 7 OUTLINE

EXAMPLE IMPLEMENTATION
WITHOUT GENERICS

EXAMPLE IMPLEMENTATION
WITHOUT GENERICS

EXAMPLE IMPLEMENTATION
WITHOUT GENERICS

