
CS 106
INTRODUCTION TO
DATA STRUCTURES

SPRING 2020

PROF. SARA MATHIESON
HAVERFORD COLLEGE

ADMIN

•  Lab 5 due Sunday

•  Lab tomorrow same as last week (I will start at 9am)
• Sign-in sheet + zoom to join the queue

•  Lab 6 posted TODAY

•  Email me (and cc partner(s)) if you want to work
together in breakout rooms (or prefer individual)

Remind me to RECORD

REVISED TA/OFFICE HOURS
Sunday 7-9pm (Juvia)

Monday 8-midnight (Steve)

Tuesday 11:30-12:30pm (Lizzie)

Tuesday 4:30-6pm (Sara)

Wednesday 8-midnight (Steve)

Thursday 11:30-12:30pm (Lizzie)

Thursday 9-11pm (Will)

Friday 8-10pm (Gareth)

Saturday 4-6pm (Will)

Saturday 8-10pm (Gareth)

Today/Tomorrow

LAB 5 MULTIPLE FILES

LAB 5 NOTES

Try NOT to use helper methods in a “static” way (like below)

method inOrder():

 BinaryTree myTree = new LinkedBinaryTree(root)

 inOrderHelper(myTree)

method inOrderHelper(BinaryTree tree):

 …

REBALANCING TREES
Many ways! Here is one (more info in link):

https://en.wikipedia.org/wiki/Tree_rotation

Note: this maintains alphabetical order so sorting is fast,
but it does change some parent/child relationships.
Edit: this example is fixed now!

https://en.wikipedia.org/wiki/Tree_rotation

R

Z R
E

E

A L
L Z

A

•  Recap priority queues and heaps

•  Array-based implementation of a heap

•  Heap sort

APR 2 OUTLINE

•  Recap priority queues and heaps

•  Array-based implementation of a heap

•  Heap sort

APR 2 OUTLINE

PRIORITY QUEUE
A queue that maintains the order of the elements according

to some priority

•  generally not FIFO
•  some other order (although insertion time could be one

criteria)

Removal order, not general order

•  object with minkey/maxkey in front
•  the rest may or may not be sorted (implementation

dependent)

HEAP DATA STRUCTURE
Sorted list: O(n) to insert (enqueue)
Unsorted list: O(n) to remove (dequeue)
Need a semi-sorted data structure!

Heap: complete binary tree (every level filled except maybe the last,

which is filled from the left)
Max heap: parent >= both children
Min heap: parent <= both children
Every subtree is also a heap

88	

76	 50	

13	 27	 1	 49	

6	 8	 11	

MAX HEAP: INSERT
insert(x):

 place x in first open spot on lowest level (or make a new level)
 “bubble up” x until heap condition satisfied, i.e.:
 while child > parent:
 swap parent and child (Lab 6: write a swap helper method)

88	

76	 50	

13	 27	 1	 49	

6	 8	 11	

Runtime?

MAX HEAP: INSERT
insert(x):

 place x in first open spot on lowest level (or make a new level)
 “bubble up” x until heap condition satisfied, i.e.:
 while child > parent:
 swap parent and child (Lab 6: write a swap helper method)

88	

76	 50	

13	 27	 1	 49	

6	 8	 11	

Runtime?

Example: insert(80)

80	

MAX HEAP: INSERT
insert(x):

 place x in first open spot on lowest level (or make a new level)
 “bubble up” x until heap condition satisfied, i.e.:
 while child > parent:
 swap parent and child (Lab 6: write a swap helper method)

88	

76	 50	

13	

27	

1	 49	

6	 8	 11	

Example: insert(80)

80	

Runtime?

MAX HEAP: INSERT
insert(x):

 place x in first open spot on lowest level (or make a new level)
 “bubble up” x until heap condition satisfied, i.e.:
 while child > parent:
 swap parent and child (Lab 6: write a swap helper method)

88	

76	

50	

13	

27	

1	 49	

6	 8	 11	

Example: insert(80)

80	

Runtime?

MAX HEAP: INSERT
insert(x):

 place x in first open spot on lowest level (or make a new level)
 “bubble up” x until heap condition satisfied, i.e.:
 while child > parent:
 swap parent and child (Lab 6: write a swap helper method)

88	

76	

50	

13	

27	

1	 49	

6	 8	 11	

Example: insert(80)

80	

Runtime: O(log(n)) !

MAX HEAP: REMOVE
removeMax():

 move last element to root
 “bubble down” until heap condition satisfied, i.e.:
 while parent < either child:
 swap parent with largest child

Example: removeMax() 88	

76	 50	

13	 27	 1	 49	

6	 8	 11	

Runtime?

MAX HEAP: REMOVE

Save
to return later

We could have moved any leaf to
the root, but we remove the “last”

one to keep the tree balanced

MAX HEAP: REMOVE
removeMax():

 move last element to root
 “bubble down” until heap condition satisfied, i.e.:
 while parent < either child:
 swap parent with largest child

Example: removeMax()

Return:	88	
76	 50	

13	 27	 1	 49	

6	 8	

11	

Runtime?

MAX HEAP: REMOVE
removeMax():

 move last element to root
 “bubble down” until heap condition satisfied, i.e.:
 while parent < either child:
 swap parent with largest child

Example: removeMax()

Return:	88	

76	

50	

13	 27	 1	 49	

6	 8	

11	

Runtime?

MAX HEAP: REMOVE
removeMax():

 move last element to root
 “bubble down” until heap condition satisfied, i.e.:
 while parent < either child:
 swap parent with largest child

Example: removeMax()

Return:	88	

76	

50	

13	

27	

1	 49	

6	 8	

11	

Runtime?

MAX HEAP: REMOVE
removeMax():

 move last element to root
 “bubble down” until heap condition satisfied, i.e.:
 while parent < either child:
 swap parent with largest child

Example: removeMax()

Return:	88	

76	

50	

13	

27	

1	 49	

6	 8	

11	

Runtime: O(log(n)) !

•  Recap priority queues and heaps

•  Array-based implementation of a heap

•  Heap sort

APR 2 OUTLINE

IMPLEMENTATION
USING AN ARRAY

88	

76	 50	

13	 27	 1	 49	

6	 8	 11	

Order in array: breadth-first!

0 1 2 3 4 5 6 7 8 9 10 11

PARENT/CHILD RELATIONSHIPS
(PAIR EXERCISE)
parent(i)

left(i)

right(i)

HINTS FOR PROVING FORMULAS

INSERT EXAMPLE

88 76 50 13 27 1 49 6 8 11

0 1 2 3 4 5 6 7 8 9 10 11

REMOVE EXAMPLE

88 76 50 13 27 1 49 6 8 11

0 1 2 3 4 5 6 7 8 9 10 11

•  Recap priority queues and heaps

•  Array-based implementation of a heap

•  Heap sort

APR 2 OUTLINE

IN-PLACE SORTING

In-place sorting algorithm: we do not create a new data structure,
we instead sort the elements within their existing data structure

•  Cons: destroys the original order, which may have been
important

•  Pros: very efficient in terms of space

IN-PLACE SORTING

In-place sorting algorithm: we do not create a new data structure,
we instead sort the elements within their existing data structure

•  Cons: destroys the original order, which may have been
important

•  Pros: very efficient in terms of space

Out-of-place sorting algorithm: returns a new data structure with

the original data sorted
•  Cons: space inefficient
•  Pros: preserves original order

IN-PLACE SORTING

In-place sorting algorithm: we do not create a new data structure,
we instead sort the elements within their existing data structure

•  Cons: destroys the original order, which may have been
important

•  Pros: very efficient in terms of space

Out-of-place sorting algorithm: returns a new data structure with

the original data sorted
•  Cons: space inefficient
•  Pros: preserves original order

Heap Sort can be implemented either way, but we will cover the in-

place version now

HEAP SORT (IN PLACE WITH ARRAY)

Phase I: unsorted array -> heap
 for i = 0, 1, … n-1:
 bubble up element at index i until arr[0…i] form a heap

HEAP SORT (IN PLACE WITH ARRAY)

Phase I: unsorted array -> heap
 for i = 0, 1, … n-1:
 bubble up element at index i until arr[0…i] form a heap

Phase II: heap -> sorted array

 for i = n-1, n-2, … 0:
 swap(0, i) // 0 is the root index
 bubble down so arr[0…i] are still a heap

HEAP SORT RUNTIME?
PAIR EXERCISE

HEAP SORT EXAMPLE: PHASE I
5 1 7 2 3 8 4 6 Phase I: unsorted array -> heap

(Below are two different stages in Phase 1)

After processing i=4:

After processing i=n-1 (end of Phase I):

7 3 5 1 2 8 4 6

8	

6	 7

3	 2	 5	 4	

1	

unsorted

unsorted heap

8 6 7 3 2 5 4 1

heap

7	

3	 5

1	 2	

5 1 7 2 3 8 4 6 Phase II: heap -> sorted array

Next time!

HEAP SORT EXAMPLE: PHASE II

