CS 106
INTRODUCTION TO
DATA STRUCTURES

SPRING 2020
PROF. SARA MATHIESON
HAVERFORD COLLEGE

ADMIN

Video on (if possible)
Microphone off (except questions, discussion)

Feel free to just ask questions, don’t need to raise your hand

Many people are now 10-13 hours ahead, some are 3
hours behind

Tomorrow: google sign in sheet for lab, then use the
google form to join the queue. We will invite you to the
zoom meeting when you’re first on the queue.

Tomorrow: we will have labs at 8:30am, 9:30am,
10:30am, and 11:30am

MAR 19 OUTLINE

« Common issues on Midterm 1

« Continue graphs

 Graph implementations

MAR 19 OUTLINE

« Common issues on Midterm 1

MIDTERM: PART 1

a) public class Main {

public static void main(String[] args) { . L
String[] arrl = new String[2]; A\ D \ \ \ /\
arri[0] = "hello " AN - \‘ W\ € \\C), \ \jv i < \S\\
arri[1] = "world"; // o ' A\ o
String[] arr2 = arri; >/ WAL AX Qv
arr2[1] = "midterm"; O

System.out.println(arri[0] + arri[i]);

MIDTERM: PART 1

d) For this question, assume that Java ArrayLists start out with a default initial capacity of 3. Further assume
that when the current capacity is reached, the size of the underlying array is doubled to create more space.

import java.util.ArrayList;
public class Main {
public static void multAll(ArrayList<Integer> nums, int z) {
for (int i = 0; i < nums.size(); i++) {
nums.set (i, nums.get(i) * z);
}
// draw stack here!
}
public static void main(String[] args) {
ArrayList<Integer> arr = new ArrayList<Integer>();
arr.add(3);
arr.add(7);
arr.add(-1);
arr.add(4);
int x = 2;
multAll(arr, x);
System.out.println(arr);

MIDTERM: PART 1

i) Draw the function call stack and heap as it would look at the line “// draw stack here!”. You may
ignore the loop variable i, and assume the user clicked “Run” to start the program. Make sure to show
how arr changes as elements are added.

SAK C\&
ii) What variables are in scope at the line “// draw stack here!”?

MIDTERM: PART 2

46 -421"/+

c) What is the value of the example expression above? Let ~ be the power operator. Show how you arrived
at this answer using a stack, and clearly indicate your final answer.

MIDTERM: PART 2

d) What is the Big-O runtime of the code below, in terms of n? Assume you have a power method pow(a,b)
that returns a’. Briefly justify your answer.

int[1[] array = new int[n][n]; // assume this operation is constant
for (int i=0; i < n; i++) {
for (int j=0; j < (int) (n/pow(2,i)); j++) {
array[il [j] = 1;

y o o A i
\\KV\% - /LQ X ? > ,2/7_ SO ?
RNy
qu‘(\/\3\/\\ NRY ST 7

MIDTERM: PART 3

a) Say I have the following code in a main method:

LinkedList<Integer> nums = new LinkedList<Integer>();
nums.add (5) ;
nums.add(7);

This will add two numbers to a list of Integers. In the digram below, label which node contains the data
5 and which contains the data 7 (i.e. write the numbers in the center of each node).

LinkedList
head

)

size\ s //—\/ S
512

[

\a\

MIDTERM: PART 3

d) Rewrite the toString method to improve the runtime as much as possible while still included every element.
What is the runtime of your new method in Big-O notation?

public String toString() {
StringBuilder sb = new StringBuilder(); // your code below

\A\‘\J\X . C WY = (. \r\o\x%

return sb.toString();

}

New runtime: @ QV\S

MIDTERM: PART 3

f) Add a swap method to LinkedList that takes two nodes and swaps them in the list. For example, on a list
containing [c, a, b] in that order, calling swap with the nodes containing elements a and b should change
the list to now have [c, b, a]. Note that swap must swap the nodes, not just their contents. You can assume
that the two parameters are always valid references to nodes in the list. Drawing a diagram may be helpful.

// This swap method is within the LinkedList class above
// precondition: a and b are valid Node references (not the data inside the Nodes)

public void swap(Node<E> a, Node<E> b) {
N

MIDTERM: PART 4

b) A Major class that extends Student and is designed to hold data specific to CS majors (i.e. “requirements
completed” and “senior thesis”). You may leave “requirements completed” as a String. Assume that the input
to the constructor is the same, and that the constructor is only called for students who are actually CS majors.

Q)u\\ﬁ\\K C\U\SS N\U\\EQ\(Q%X@\/\cg\s S/XS\/\B\QV\)‘— {

o}
o

&

Rv\\p\\p N\«S\, LS%“V\‘QC} “VDB S}

SV\QQ(K(O"DS

S

MIDTERM: PART 5

Problem 5 (20 Points) Stacks

Write a Java method that will take two sorted stacks (given as ArrayStacks) sortedA and sortedB containing
integers (with the minimum on top) and create and return a new stack that is sorted and contains all elements
from sortedA and sortedB (including possible duplicates). You are allowed to use only standard stack operations:
pop, push, size, isEmpty and peek. No other data structure, such as an array/ArrayList/LinkedList, is
allowed. It is okay to destroy the two input stacks in the process. It may help to draw a diagram. You do not
need to include comments except in places where your code is unclear or incomplete.

public ArrayStack<Integer> sort(ArrayStack<Integer> sortedA, ArrayStack<Integer> sortedB) {

R
|

MAR 19 OUTLINE

« Continue graphs

THE GRAPH ADT

The designation of the graph as undirected or directed
happens at construction time.

numVertices () outDegree (V)
vertices () inDegree (V)

numEdges () outgoingEdges (V)
edges () incomingEdges (V)
getEdge(u,v) insertVertex(elem)
endpoints (e) insertEdge(u,v,elem)
removeVertex (v) removeEdge (e)

Note: there are many ways to implement a Graph!

PAIR EXERCISE

What should each of these methods return for this specific
graph?

vertices()

numVertices|()

numEdges ()
outDegree(C)
inDegree(B)
outgoingEdges (A)

incomingEdges (B)

PAIR EXERCISE

What should each of these methods return for this specific
graph?

vertices()
numVertices|()

numEdges ()

outDegree(C)
inDegree(B) 2
outgoingEdges (A) {E, C, B}
incomingEdges(B) {A, C}

MAR 19 OUTLINE

 Graph implementations

GRAPH ADJACENCY LIST
REPRESENTATION

Vertices

One instance variable:
list of Vertices

See section 14.2 of the book for more info!

GRAPH ADJACENCY LIST
REPRESENTATION

Each Vertex contains a
list of destination edges

See section 14.2 of the book for more info!

SIMPLIFIED GRAPH INTERFACE

VES:

* Simplified Graph interface
*/

public interface Graph {

List<Vertex> vertices();

int numVertices();

Vertex insertVertex(String name);
void insertEdge(Vertex u, Vertex v);
boolean hasEdge(Vertex u, Vertex v);
List<Vertex> outgoingEdges(Vertex v);

List<Vertex> incomingEdges(Vertex v);

START OF VERTEX CLASS

public class Vertex {

private String name;
private List<Vertex> edges;

public Vertex(String initName) {
name = initName;
edges = new ArraylList<Vertex>();

}

public String getName() {
return name;
}

public List<Vertex> getEdges() {
return edges;
}

START OF ADJACENCY GRAPH
CLASS

// note this implementation uses an adjacency xlistx
public class AdjacencyGraph implements Graph {

private List<Vertex> vertices;

public AdjacencyGraph() {
vertices = new ArraylList<Vertex>();
}

public List<Vertex> vertices() {
return vertices;
}

public int numVertices() {
return vertices.size();
}

public Vertex insertVertex(String name) {
Vertex v = new Vertex(name);
vertices.add(v);
return v;

GRAPH ADJACENCY LIST
RUNTIMES (PAIR EXERCISE)

Let n be the number of vertices. Fill in the runtime for each method below.

List<Vertex> vertices()

int numVertices ()

Vertex insertVertex(elem)
void insertEdge(u,vVv)

boolean hasEdge(u,vVv)
List<Vertex> outgoingEdges (V)

List<Vertex> incomingEdges (V)

GRAPH ADJACENCY LIST
RUNTIMES (PAIR EXERCISE)

Let n be the number of vertices. Fill in the runtime for each method below.

List<Vertex> vertices() 0(1)
int numVertices () 0(1)
Vertex insertVertex(elem) 0(1)
void insertEdge(u,vVv) 0(1)
boolean hasEdge(u,vVv) O(n)
List<Vertex> outgoingEdges (V) 0(1)

List<Vertex> incomingEdges (V) 0 (n?)

ADJACENCY MATRIX

ADJACENCY MATRIX
HEDD
n 0 1 1 0

0

0 0 0
0 1 0 0
1 0 0

1

GRAPH ADJACENCY MATRIX
RUNTIMES

Let n be the number of vertices. Fill in the runtime for each method below.

List<Vertex> vertices()

int numVertices ()

Vertex insertVertex(elem)
void insertEdge(u,vVv)

boolean hasEdge(u,vVv)
List<Vertex> outgoingEdges (V)

List<Vertex> incomingEdges (V)

GRAPH ADJACENCY MATRIX
RUNTIMES

Let n be the number of vertices. Fill in the runtime for each method below.

List<Vertex> vertices() 0(1)
int numVertices () 0(1)
Vertex insertVertex(elem) 0(1)
void insertEdge(u,vVv) 0(1)
boolean hasEdge(u,vVv) 0(1l)
List<Vertex> outgoingEdges (V) O(n)

List<Vertex> incomingEdges (V) O(n)

EXERCISES (AFTER CLASS)

What’s the adjacency matrix for this graph?

What operations might be slow with an adjacency matrix?

