
CS 106
INTRODUCTION TO
DATA STRUCTURES

SPRING 2020

PROF. SARA MATHIESON
HAVERFORD COLLEGE

ADMIN
•  Video on (if possible)
•  Microphone off (except questions, discussion)

•  Feel free to just ask questions, don’t need to raise your hand

•  Many people are now 10-13 hours ahead, some are 3
hours behind

•  Tomorrow: google sign in sheet for lab, then use the
google form to join the queue. We will invite you to the
zoom meeting when you’re first on the queue.

•  Tomorrow: we will have labs at 8:30am, 9:30am,
10:30am, and 11:30am

•  Common issues on Midterm 1

•  Continue graphs

•  Graph implementations

MAR 19 OUTLINE

•  Common issues on Midterm 1

•  Continue graphs

•  Graph implementations

MAR 19 OUTLINE

MIDTERM: PART 1

MIDTERM: PART 1

MIDTERM: PART 1

MIDTERM: PART 2

MIDTERM: PART 2

MIDTERM: PART 3

MIDTERM: PART 3

MIDTERM: PART 3

MIDTERM: PART 4

MIDTERM: PART 5

•  Common issues on Midterm 1

•  Continue graphs

•  Graph implementations

MAR 19 OUTLINE

THE GRAPH ADT

The designation of the graph as undirected or directed
happens at construction time.

numVertices() outDegree(v)
vertices() inDegree(v)
numEdges() outgoingEdges(v)
edges() incomingEdges(v)
getEdge(u,v) insertVertex(elem)
endpoints(e) insertEdge(u,v,elem)
removeVertex(v) removeEdge(e)

Note: there are many ways to implement a Graph!

PAIR EXERCISE
What should each of these methods return for this specific
graph?

A B

C
D

E

Method Returns
vertices()

numVertices()
numEdges()
outDegree(C)
inDegree(B)

outgoingEdges(A)
incomingEdges(B)

PAIR EXERCISE
What should each of these methods return for this specific
graph?

A B

C
D

E

Method Returns
vertices() {A, B, C, D, E}
numVertices() 5
numEdges() 7
outDegree(C) 2
inDegree(B) 2
outgoingEdges(A) {E, C, B}
incomingEdges(B) {A, C}

•  Common issues on Midterm 1

•  Continue graphs

•  Graph implementations

MAR 19 OUTLINE

GRAPH ADJACENCY LIST
REPRESENTATION

A

B

C

D

Vertices A

B

C

D

See section 14.2 of the book for more info!

One instance variable:
list of Vertices

GRAPH ADJACENCY LIST
REPRESENTATION

A

B

C

D

Vertices A

B

C

D

B C

B

A B

null

See section 14.2 of the book for more info!

Each Vertex contains a
list of destination edges

SIMPLIFIED GRAPH INTERFACE

START OF VERTEX CLASS

START OF ADJACENCY GRAPH
CLASS

GRAPH ADJACENCY LIST
RUNTIMES (PAIR EXERCISE)

List<Vertex> vertices()

int numVertices()

Vertex insertVertex(elem)

void insertEdge(u,v)

boolean hasEdge(u,v)

List<Vertex> outgoingEdges(v)

List<Vertex> incomingEdges(v)

Let n be the number of vertices. Fill in the runtime for each method below.

GRAPH ADJACENCY LIST
RUNTIMES (PAIR EXERCISE)

List<Vertex> vertices() O(1)

int numVertices() O(1)

Vertex insertVertex(elem) O(1)

void insertEdge(u,v) O(1)

boolean hasEdge(u,v) O(n)

List<Vertex> outgoingEdges(v) O(1)

List<Vertex> incomingEdges(v) O(n2)

Let n be the number of vertices. Fill in the runtime for each method below.

ADJACENCY MATRIX

A B C D

A

B

C

D

A

B

C

D

ADJACENCY MATRIX

A B C D

A 0 1 1 0

B 0 0 0 0

C 0 1 0 0

D 1 1 0 0

A

B

C

D

GRAPH ADJACENCY MATRIX
RUNTIMES

List<Vertex> vertices()

int numVertices()

Vertex insertVertex(elem)

void insertEdge(u,v)

boolean hasEdge(u,v)

List<Vertex> outgoingEdges(v)

List<Vertex> incomingEdges(v)

Let n be the number of vertices. Fill in the runtime for each method below.

GRAPH ADJACENCY MATRIX
RUNTIMES

List<Vertex> vertices() O(1)

int numVertices() O(1)

Vertex insertVertex(elem) O(1)

void insertEdge(u,v) O(1)

boolean hasEdge(u,v) O(1)

List<Vertex> outgoingEdges(v) O(n)

List<Vertex> incomingEdges(v) O(n)

Let n be the number of vertices. Fill in the runtime for each method below.

EXERCISES (AFTER CLASS)
What’s the adjacency matrix for this graph?

What operations might be slow with an adjacency matrix?

A

B
C

DE

