
CS 106
INTRODUCTION TO
DATA STRUCTURES

SPRING 2020

PROF. SARA MATHIESON
HAVERFORD COLLEGE

ADMIN
• Midterm 1 in-class on Thursday

• Create one-page (front & back) “cheat-sheet”

• Office Hours TODAY! 4:30-6pm (H110)

• Remind me to hand back Handout 12 and Lab 2

• We DO have lab this week and attendance is still
required. You do NOT need to do anything in advance
though, you may begin Lab 4 during lab.

• Lab 4 will be posted Wed or Thurs

• Queues (theory and implementation)

• Review arrays and ArrayLists

• Review Nodes and Linked Lists

• Practice Problems

MAR 3 OUTLINE

• Queues (theory and implementation)

• Review arrays and ArrayLists

• Review Nodes and Linked Lists

• Practice Problems

MAR 3 OUTLINE

QUEUES

How would you want a data structure to work for waiting in
line at a store?

What is the rate of input is different than the rate of output?
Example: people show up to the DMV at random
times, but processing takes about the same time for
each person

Define an abstract data type (ADT).

THE QUEUE ADT

Insertions and
deletions are First In
First Out (FIFO)
-Insert at the back
-Delete from the front

Operations:
• enqueue(Object)
• Object dequeue()
• Object first()
• int size()
• boolean isEmpty()

IMPLEMENTING A QUEUE
Brainstorm: using the data structures we know about, how
could we implement this ADT?

IMPLEMENTING A QUEUE
Brainstorm: using the data structures we know about, how
could we implement this ADT?

Many ways to implement a Queue! Underneath, we can use:
* Arrays
* Lists
* Stacks

ARRAY-BASED QUEUE
IMPLEMENTATION
An array of size n in a circular fashion
Two ints to track front and size

• f: index of the front element
• size: number of stored elements

Q

0 1 2 rf

normal configuration

Q

0 1 2 fr

wrap-around configuration (circular)

EXAMPLE

0 1 2 3 4

Size: 0

Arrow is front

EXAMPLE

3
0 1 2 3 4

Size: 1

Arrow is front

EXAMPLE

3 4
0 1 2 3 4

Size: 2

Arrow is front

EXAMPLE

3 4 5
0 1 2 3 4

Size: 3

Arrow is front

EXAMPLE

3 4 5 2
0 1 2 3 4

Size: 4

Arrow is front

EXAMPLE

3 4 5 2 1
0 1 2 3 4

Size: 5

Arrow is front

EXAMPLE

4 5 2 1
0 1 2 3 4

Size: 4

Arrow is front

EXAMPLE

5 2 1
0 1 2 3 4

Size: 3

Arrow is front

EXAMPLE

-9 5 2 1
0 1 2 3 4

Size: 4

Arrow is front

EXAMPLE

-9 2 1
0 1 2 3 4

Size: 3

Arrow is front

EXAMPLE

-9 1
0 1 2 3 4

Size: 2

Arrow is front

EXAMPLE

-9
0 1 2 3 4

Size: 1

Arrow is front

EXAMPLE

0 1 2 3 4

Size: 0

Arrow is front

EXAMPLE

-8
0 1 2 3 4

Size: 1

Arrow is front

Q
U

E
U

E
 W

IT
H

C

IR
C

U
LA

R
 A

R
R

AY

Q
U

E
U

E
 W

IT
H

C

IR
C

U
LA

R
 A

R
R

AY
Two constructors (allow

user to select capacity, or
use default.

Q
U

E
U

E
 W

IT
H

C

IR
C

U
LA

R
 A

R
R

AY

Q
U

E
U

E
 W

IT
H

C

IR
C

U
LA

R
 A

R
R

AY

Q
U

E
U

E
 W

IT
H

C

IR
C

U
LA

R
 A

R
R

AY

Q
U

E
U

E
 W

IT
H

C

IR
C

U
LA

R
 A

R
R

AY

Q
U

E
U

E
 W

IT
H

C

IR
C

U
LA

R
 A

R
R

AY

Q
U

E
U

E
 W

IT
H

C

IR
C

U
LA

R
 A

R
R

AY

Q
U

E
U

E
 W

IT
H

C

IR
C

U
LA

R
 A

R
R

AY

DESIGNING DATA
STRUCTURES
1. Make a Course object that can store a name and list of

students. Include relevant constructors, getters, and
setters.

2. Make a LimitedEnrollmentCourse that has a cap on the
number of students who can enroll. Have it inherit from
Course.

3. Make addStudent, removeStudent, and getEnrolled
methods that correctly handle limited versus unlimited
enrollment.

Extra practice!

• Queues (theory and implementation)

• Review arrays and ArrayLists

• Review Nodes and Linked Lists

• Practice Problems

MAR 3 OUTLINE

ARRAYS
• Fixed length

• Pro: all operations O(1)
• Con: cannot resize or move around elements easily

• Declare

• Initialize (allocate)

ARRAYS
• Fixed length

• Pro: all operations O(1)
• Con: cannot resize or move around elements easily

• Declare

• Initialize (allocate)

• “set”:

• “get”:

• length

ARRAYS
• Fixed length

• Pro: all operations O(1)
• Con: cannot resize or move around elements easily

• Declare

• Initialize (allocate)

• “set”:

• “get”:

• length

Q: what is happening here??

ARRAY LISTS
• We allow the size to change, but we don’t copy over elements

every time a new element doesn’t fit

• Use the idea of doubling the size of the array to get an average
creation time of O(n) for length n array

• Declare/Initialize

• add:

ARRAY LISTS
• We allow the size to change, but we don’t copy over elements

every time a new element doesn’t fit

• Use the idea of doubling the size of the array to get an average
creation time of O(n) for length n array

• Declare/Initialize

• add:

• get:

• set:

• size:

• Queues (theory and implementation)

• Review arrays and ArrayLists

• Review Nodes and Linked Lists

• Practice Problems

MAR 3 OUTLINE

NODE OBJECTS

• Doubly linked list

• Singly linked list

Match the constructor to the type of
list that would contain such Nodes

NODE OBJECTS

• Doubly linked list

• Singly linked list

Match the constructor to the type of
list that would contain such Nodes

LINKED LISTS

• Singly linked list

• Singly linked list with
tail pointer

• Doubly linked list

• Doubly linked list with
tail pointer

• Doubly linked with
sentinels

Match the constructor to the
appropriate type(s) of list.

LINKED LISTS

• Singly linked list

• Singly linked list with
tail pointer

• Doubly linked list

• Doubly linked list with
tail pointer

• Doubly linked with
sentinels

Match the constructor to the
appropriate type(s) of list.

LINKED LISTS

• Singly linked list

• Singly linked list with
tail pointer

• Doubly linked list

• Doubly linked list with
tail pointer

• Doubly linked with
sentinels

Match the constructor to the
appropriate type(s) of list.

LINKED LISTS

• Singly linked list

• Singly linked list with
tail pointer

• Doubly linked list

• Doubly linked list with
tail pointer

• Doubly linked with
sentinels

Match the constructor to the
appropriate type(s) of list.

What is the issue with
the following code?

What is printed?

What is the issue with
the following code?

What is printed?

Only “107”!

• Queues (theory and implementation)

• Review arrays and ArrayLists

• Review Nodes and Linked Lists

• Practice Problems

MAR 3 OUTLINE

WORK WITH A PARTNER!

• Question 1: focus on understanding the code and thinking
about what type of loops to use (don’t rewrite the code now)

• Question 2: skip (about Queues)

QUESTION 1

QUESTION 3
There are many ways to do this! Two are shown below. What

are the runtimes of these two algorithms?

1)

2)

QUESTION 4
a) get & set (only public methods)

b) Could be a LinkedList or an ArrayList

c) Less efficient than an ArrayList, same efficiency as a LinkedList

d) No! the details are abstracted away

Visualization:

Assume that we have stack A with elements 5, 11, -1, 3 (where 3 is on
the top). What happens when we call get(2)? Draw the stacks A and
B and see what happens.

QUESTION 5

a) Pseudocode:
tail = tail.prev
tail.next = null

b) Hints: there are 6 pointers that need to be rearranged (2 for
A, 2 for B, and head/tail)

d) See notes from Lecture 11

