
Baby Names

Haverford CS 106 - Introduction to Data Structures

Lab 3 (1.5 weeks)

1 Overview

In this assignment, we’ll be exploring linked lists and more complex custom-
designed classes. Your task will be to design a linked list that manages annual
statistics about baby names in the United States, allow it to take specific com-
mand line inputs, and print out statistics based on the input.

Note: this dataset presents a very gendered way of viewing baby names. We are us-
ing this dataset not because we endorse this binary, but because it is a good dataset
for understanding the material. It is also useful to see how data has historically
been collected and to think about how that could change in the future.

2 The Input

2.1 Input File Format

We’ll be taking input from files containing lines in the following format:

rank,male-name,male-number,female-name,female-number

where the comma-separated fields have the following meanings:

rank the ranking of the names in this file
male-name a male name of this rank
male-number number of males with this name
female-name a female name of this rank
female-number number of females with this name

This is the format of database files obtained from the U.S. Social Security Ad-
ministration of the top 1000 registered baby names. Each line begins with a rank,

1



followed by the male name at that rank, followed by the number of males with
that name, etc. Here is an example showing data from the year 2002:

1,Jacob,30568,Emily,24463

2,Michael,28246,Madison,21773

3,Joshua,25986,Hannah,18819

4,Matthew,25151,Emma,16538

5,Ethan,22108,Alexis,15636

...

996,Ean,157,Johana,221

997,Jovanni,157,Juana,221

998,Alton,156,Juanita,221

999,Gerard,156,Katerina,221

1000,Keandre,156,Amiya,220

As you can see from the above, in 2002, there were 30,568 male babies named
Jacob and 24,463 babies named Emily, making them the most popular names
used in that year. Similarly, going down the list, we see that there were 220 new-
born females named Amiya, making it the 1000th most popular female baby name.

The entire data set contains a file for each year from 1990 to 2017, named
names1990.csv, ... , names2017.csv respectively.

2.2 Input Command

One of the end goals of this lab is to print out the statistics of a given (input) name
for given (input) files. This will be further specified in Section 5.7 but for now just
understand that the program will eventually give output for specific names and
files that are given.

3 Resources

This section contains some information that will be helpful throughout. Con-
sult the Java String documentation for more details https://docs.oracle.com/

javase/7/docs/api/java/lang/String.html.

1. Use .equals() when comparing Strings. For this lab, you do not need to
overwrite the .equals() method for lists or nodes, you can use String to
compare two names directly.

2. Consult the documentation to learn about the .compareTo method for Strings.

2

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html


3. Consult the documentation to learn about the .subString method for Strings.

4. In Java, dividing two integers results in an integer (rounded down). To
achieve a double or fractional result, first cast one of the integers to a double.

5. For all classes you create, add a a .toString method to help with debugging.
It may also be helpful to read in only a few lines of one file to start, to make
sure you’re sorting the names correctly.

6. To round your results to 6 decimal places, you can use string formatting
(similar to Python). For example

double fraction = 0.456622723;

System.out.println(String.format("%.6g%n", fraction));

4 End goal

4.1 Components of output

You will be building two linked lists to store the baby names found in the given
files, one for the male names and one for the female names. The linked lists should
be kept in alphabetically sorted order by name.

Specifically, the program needs to be able to look up a name and report the
following statistics:

1. Position in linked list - an integer indicating the position of the name in your
linked list so that we can verify your list is sorted lexicographically. The
position of the first name in the linked list should be 0.

2. For each year

(a) rank - the rank of the name that year

(b) number - the number of babies given that name that year

(c) percentage - the percentage of babies given that name that year (for
that gender)

3. Total

(a) rank - the rank of the name among all years (for that gender)

(b) number - the number of babies given that name among all years

(c) percentage - the percentage of babies given that name among all years
(for that gender)

3



4.2 Output format

Considering each of the items listed in Section 4.1, the output format should like
like the following:

Position of Name in the Linked List: integer

(One empty line)

Year

Name : Rank, Number, Percent

(One empty line)

Year

Name : Rank, Number, Percent

(One empty line)

...

(One empty line)

Total

Name : Rank, Number, Percent

where each italicized item should be replaced with what they are representing.
There should be exactly one space between the colon and the rank and between
the comma and the other attributes of the year.

For example, if a given input wants all 28 files to be read in and wants the statistics
for the name “Mary” (female), the following should be printed:

Position of Mary in the Linked List: 1423

1990

Mary: 35, 8666, 0.005432

1991

Mary: 38, 8760, 0.005596

...

2017

Mary: 126, 2381, 0.001877

Total

Mary: 51, 142630, 0.003630

4



4.3 VerifyFormat.java

The correctness of your program will be graded using the autograder which requires
the format to be as outlined in Section 4.2. Among the starter files, there is a file
called VerifyFormat_Lab3.java which you can run to check your output format.
It checks for the format but not the correctness, and you should avoid making
changes to the file to guarantee a correct checking tool.

5 Specific tasks

5.1 Foreword

The two linked lists you are building should be from scratch. You are not allowed
to use Java’s built-in LinkedList, although you may use Java’s ArrayList for
tasks besides storing the lists of names. You should implement a doubly linked list
with sentinels for this lab. (You are welcome to then implement a singly linked list
with the same functionality, but only if you first understand how to do everything
with a doubly linked list.)

Although generic linked lists have many advantages, it is acceptable for this
lab for your code to be simplified with non-generic linked lists that are locked to a
Node class with the data type String, which represents one name. In other words,
you should have a Node class, but it does not need to be generic and the type of
data inside each Node can be of type String. Note: there are two other options if
you feel very comfortable with nodes, classes, and generics:

• You can instead have two classes: one generic Node class and one Name class.
Then your linked list class will be made up of Node objects, each with data
type Name. This is probably the most theoretically sound way of doing the
lab, but it is not required.

• You can instead have a single Name class that acts as both node and name
(this is similar to the recommended way, but with the class name changed
to Name. If this makes more sense to you, this way is fine too, but it is not
recommended since it might cause confusion between Node objects and the
String representing the name.

Calculating total rank is non-trivial. Think through your data structure and
algorithm needs before you start. You should write the program so that it makes
best use of available storage. Resist the urge to store redundant information in
many different places.

The following sections are suggested steps that you could take to accomplish
this lab.

5



5.2 Designing the Node class

Before creating a linked list, you should establish the Node class. Since the linked
list will be composed of baby names, its nodes will have data of type String. You
will eventually need to modify this Node class to store all the relevant statistics
for a particular name, but for now your Node constructor needs to take in only a
String for the name - don’t worry about other statistics until Section 5.4.

5.3 Designing the linked list object

Create an appropriately-named class that represents the linked list object of Nodes
with data of type String. Allow the insertion of nodes into this list, keeping in
mind that the linked list should be sorted lexicographically (alphabetically). Keep
in mind that multiple files may contain the same name. Note that the name field
of your Node class should be final and may not be changed. In other words, you
must rearrange Nodes, not the strings contained within the Nodes.

After you have written your method(s) for insertion, try in your Main class
reading the file(s) into two lists of unique names in sorted order. If you are having
trouble debugging the sorted order, try creating a smaller input file (by keeping
only the first 10 or 20 names) and using that instead. Recall that you can use
the opencsv library to read in data from csv files - you may want to look into the
difference between CSVReader and CSVReaderHeaderAware.

You may also want to make the method that returns the position of a name in
the linked list and test it out now as well.

5.4 Storing the yearly rank and number

Since multiple different years may have the same name (each with its own statis-
tics), taking care of storing the statistics will require an auxiliary data structure.
Consider what you need and decide where and how to store the information care-
fully. Then, appropriately expand the Node class to allow the storage of yearly
number and rank.

You may also need to modify the insertion method and the file-reading code
to create a new Node object if it’s not already in the list or to update it with the
given yearly stats if it is.

5.5 Storing the totals and Calculating percentages

Computing the yearly percentages, as well as total number and total percentage,
require additional auxiliary data structures besides the linked lists. Consider what
you need and decide where and how to store the information carefully.

6



After implementing the reasonable data structures needed, enable computing
of necessary totals. Then, enable reporting of yearly percentages, Total number,
and Total percentage for a given name.

Ensure that you enable the Total rank computing for a given name as well.
Think carefully about how to do this, and design and implement an algorithm.
Note that the totals at the very end of the printout are not optional, but worth a
relatively low fraction of the total points.

5.6 Reporting the baby name information

Make a method that returns a String formatted as mentioned in Section 4.2. It
should take in the name of the baby as input, and report all years that were read
in and the Total statistics. This method should only be called after all files are
read in.

Remember that Strings can be concatenated with the + sign between two
strings, and “\n” will allow you to add a line break.

Do not forget to print this String in your Main class.

5.7 Look-up via command-line arguments

5.7.1 Preamble

You may want to tackle this task in pieces - single name lookup on a single file,
enable single name look up on multiple (or all) files, and then enable multiple
name lookup on multiple files.

5.7.2 Input format revisited

As mentioned earlier in Section 2.2, your program should take command-line argu-
ments to input zero or more file names to process. The name(s) will be preceded
by the appropriate flag: -m name or -f name which indicate a male name or a
female name to look up, respectively.

For example:
java Main -f Dianna names1990.csv names2000.csv

should print out the rank, number and percentages (as explained in Section 4.2)
of the female name Dianna used in 1990, 2000 as well as the combined statistics of
these two years. More than one name may be searched, each with the appropriate
preceding -f or -m.

You many assume that the list of filenames is always last, i.e. the first non-flag
argument you encounter is assumed to be the beginning of the list of file names.

7



5.7.3 Implementing name lookup via command line arguments

Implement checking the flags for -m name and -f name and report the statistics
of the name from appropriate linked list.

Make sure you error-check your arguments thoroughly, i.e. illegal/badly-formatted
options, non-existent options. Your program should behave rationally no matter
how unreasonable the input or the value of flags. It is acceptable for this lab to
print out a generic error message if the flags do not conform to the description
here.

5.7.4 Testing out the linked list with command line arguments

Recall that if you are sending your main method arguments from within Eclipse,
you should go to Run Configurations, then Arguments, and enter only the input
from the command line above that comes after java Main. For example, you
might enter just the arguments -f Dianna names1990.csv names2000.csv.

6 Writeup

Please include a writeup in your README that explains your class design and
algorithms. In particular, address the following questions:

1. Which instance variables do you have in your Name (correction: Node) class?

2. How do you organize the storage of the yearly statistics per name versus the
totals?

3. Where are the overall totals stored and where are the yearly totals stored?

4. How do you keep the linked lists in alphabetically sorted order?

5. How is total rank computed?

Finally, make sure to complete the Lab Questionnaire in the README. Please also
answer the following question in this section: was the VerifyFormat_Lab3.java

useful for you during the development of your code?
Note: you may copy/paste the following to run the test above:

-f Mary names1990.csv names1991.csv names1992.csv names1993.csv

names1994.csv names1995.csv names1996.csv names1997.csv names1998.csv

names1999.csv names2000.csv names2001.csv names2002.csv names2003.csv

names2004.csv names2005.csv names2006.csv names2007.csv names2008.csv

names2009.csv names2010.csv names2011.csv names2012.csv names2013.csv

names2014.csv names2015.csv names2016.csv names2017.csv

8


	Overview
	The Input
	Input File Format
	Input Command

	Resources
	End goal
	Components of output
	Output format
	VerifyFormat.java

	Specific tasks
	Foreword
	Designing the Node class
	Designing the linked list object
	Storing the yearly rank and number
	Storing the totals and Calculating percentages
	Reporting the baby name information
	Look-up via command-line arguments
	Preamble
	Input format revisited
	Implementing name lookup via command line arguments
	Testing out the linked list with command line arguments


	Writeup

