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– Project meetings with all groups
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• Flexibility for this class:
– I will drop the lowest lab grade
– Final project can be simplified as needed
– Accommodations or flexibility beyond this: 

collaboration with class deans
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sometimes comical) but nowhere near 
as good as a smooth human translation. 
“Deep learning will have a chance to do 
something much better than the cur-
rent practice here,” says crowd-sourcing 
expert Luis von Ahn, whose company 
Duolingo, based in Pittsburgh, Penn-
sylvania, relies on humans, not com-
puters, to translate text. “The one thing 
everyone agrees on is that it’s time to try 
something different.” 

DEEP SCIENCE
In the meantime, deep learning has 
been proving useful for a variety of 
scientific tasks. “Deep nets are really 
good at finding patterns in data sets,” 
says Hinton. In 2012, the pharmaceuti-
cal company Merck offered a prize to 
whoever could beat its best programs 
for helping to predict useful drug can-
didates. The task was to trawl through 
database entries on more than 30,000 
small molecules, each of which had 
thousands of numerical chemical-prop-
erty descriptors, and to try to predict 
how each one acted on 15 different tar-
get molecules. Dahl and his colleagues 
won $22,000 with a deep-learning sys-
tem. “We improved on Merck’s baseline 
by about 15%,” he says.

Biologists and computational 
researchers including Sebastian Seung 
of the Massachusetts Institute of Tech-
nology in Cambridge are using deep 
learning to help them to analyse three-
dimensional images of brain slices. Such 
images contain a tangle of lines that rep-
resent the connections between neu-
rons; these need to be identified so they can be 
mapped and counted. In the past, undergradu-
ates have been enlisted to trace out the lines, 
but automating the process is the only way to 
deal with the billions of connections that are 
expected to turn up as such projects continue. 
Deep learning seems to be the best way to auto-
mate. Seung is currently using a deep-learning 
program to map neurons in a large chunk of the 
retina, then forwarding the results to be proof-
read by volunteers in a crowd-sourced online 
game called EyeWire. 

William Stafford Noble, a computer scien-
tist at the University of Washington in Seattle, 
has used deep learning to teach a program to 
look at a string of amino acids and predict the 
structure of the resulting protein — whether 
various portions will form a helix or a loop, for 
example, or how easy it will be for a solvent to 
sneak into gaps in the structure. Noble has so 
far trained his program on one small data set, 
and over the coming months he will move on to 
the Protein Data Bank: a global repository that 
currently contains nearly 100,000 structures.

For computer scientists, deep learning 
could earn big profits: Dahl is thinking about 
start-up opportunities, and LeCun was hired 

last month to head a new AI department at 
Facebook. The technique holds the promise 
of practical success for AI. “Deep learning 
happens to have the property that if you feed it 
more data it gets better and better,” notes Ng. 
“Deep-learning algorithms aren’t the only ones 
like that, but they’re arguably the best — cer-

tainly the easiest. That’s why it has huge prom-
ise for the future.”

Not all researchers are so committed to the 
idea. Oren Etzioni, director of the Allen Insti-
tute for Artificial Intelligence in Seattle, which 
launched last September with the aim of devel-
oping AI, says he will not be using the brain for 
inspiration. “It’s like when we invented flight,” he 
says; the most successful designs for aeroplanes 

were not modelled on bird biology. Etzi-
oni’s specific goal is to invent a computer 
that, when given a stack of scanned text-
books, can pass standardized elemen-
tary-school science tests (ramping up 
eventually to pre-university exams). To 
pass the tests, a computer must be able 
to read and understand diagrams and 
text. How the Allen Institute will make 
that happen is undecided as yet — but for 
Etzioni, neural networks and deep learn-
ing are not at the top of the list. 

One competing idea is to rely on a 
computer that can reason on the basis 
of inputted facts, rather than trying to 
learn its own facts from scratch. So it 
might be programmed with assertions 
such as ‘all girls are people’. Then, when 
it is presented with a text that mentions 
a girl, the computer could deduce that 
the girl in question is a person. Thou-
sands, if not millions, of such facts are 
required to cover even ordinary, com-
mon-sense knowledge about the world. 
But it is roughly what went into IBM’s 
Watson computer, which famously 
won a match of the television game 
show Jeopardy against top human com-
petitors in 2011. Even so, IBM’s Watson 
Solutions has an experimental interest 
in deep learning for improving pattern 
recognition, says Rob High, chief tech-
nology officer for the company, which 
is based in Austin, Texas. 

Google, too, is hedging its bets. 
Although its latest advances in picture 
tagging are based on Hinton’s deep-
learning networks, it has other depart-
ments with a wider remit. In December 

2012, it hired futurist Ray Kurzweil to pursue 
various ways for computers to learn from 
experience — using techniques including but 
not limited to deep learning. Last May, Google 
acquired a quantum computer made by D-Wave 
in Burnaby, Canada (see Nature 498, 286–288; 
2013). This computer holds promise for non-
AI tasks such as difficult mathematical com-
putations — although it could, theoretically, be 
applied to deep learning.

Despite its successes, deep learning is still in 
its infancy. “It’s part of the future,” says Dahl. 
“In a way it’s amazing we’ve done so much with 
so little.” And, he adds, “we’ve barely begun”. ■

Nicola Jones is a freelance reporter based near 
Vancouver, Canada.
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Deep-learning neural networks use layers of increasingly 
complex rules to categorize complicated shapes such as faces.

FACIAL RECOGNITION

Layer 1: The 
computer 
identi!es pixels 
of light and dark. 

Layer 2: The 
computer learns to 
identify edges and 
simple shapes.

Layer 3: The computer 
learns to identify more 
complex shapes and 
objects.

Layer 4: The computer 
learns which shapes 
and objects can be used 
to de!ne a human face.

“DEEP LEARNING HAS THE 
PROPERTY THAT IF YOU 

FEED IT MORE DATA, IT GETS 
BETTER AND BETTER.”
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First fully connected neural networks for images

glasses?

smiling?

identity?



Takeaways from last time

• As the number of parameters grows, a non-convex 
function often has more and more local minima

• Starting at a “good” point is crucial!

Image: O’Reilly Media
Convex Non-convex



Takeaways from last time

• Unsupervised pre-training uses latent structure 
in the data as a starting point for weight 
initialization

• After this process, the network is “fine-tuned”

• In practice this has been found to increase 
accuracy on specific tasks (which could be 
specified after feature learning)



Weight initialization
• We still have to initialize the pre-training

• All 0’s initialization is bad! Causes nodes to 
compute the same outputs, so then the 
weights go through the same updates during 
gradient descent

• Need asymmetry!  => usually use small 
random values



Mini-batches
• So far in this class, we have considered 

stochastic gradient descent, where one data 
point is used to compute the gradient and 
update the weights

• On the flipside is batch gradient descent, 
where we compute the gradient with respect 
to all the data, and then update the weights

• A middle ground uses mini-batches of 
examples before updating the weights



• The output of the final fully connected layer is a vector 
of length K (number of classes)

Notes about scores and softmax



• The output of the final fully connected layer is a vector 
of length K (number of classes)

• The raw scores are transformed into probabilities using 
the softmax function: (let sk be the score for class k)

• Then we apply cross-entropy loss to these probabilities

K

Notes about scores and softmax







Motivation for moving away from FC architectures 

• For a 32x32x3 image (very small!) we have 
p=3072 features in the input layer

• For a 200x200x3 image, we would have 
p=120,000! doesn’t scale



Motivation for moving away from FC architectures 

• For a 32x32x3 image (very small!) we have 
p=3072 features in the input layer

• For a 200x200x3 image, we would have 
p=120,000! doesn’t scale

• FC networks do not explicitly account for the 
structure of an image and the correlations/ 
relationships between nearby pixels



Idea: 3D volumes of neurons
• Do not “flatten” image, keep it as a volume with 

width, height, and depth



Idea: 3D volumes of neurons
• Do not “flatten” image, keep it as a volume with 

width, height, and depth
• For CIFAR-10, we would have:

– Width=32, Height=32, Depth=3

Image: modified from Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/
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Idea: 3D volumes of neurons
• Do not “flatten” image, keep it as a volume with 

width, height, and depth
• For CIFAR-10, we would have:

– Width=32, Height=32, Depth=3

• Each layer is also a 3 dimensional volume

Image: modified from Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/
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Idea: 3D volumes of neurons
• Do not “flatten” image, keep it as a volume with 

width, height, and depth
• For CIFAR-10, we would have:

– Width=32, Height=32, Depth=3

• Each layer is also a 3 dimensional volume
• The output layer is 1x1xC, where C is the number of 

classes (10 for CIFAR-10)

Image: modified from Stanford Course CS231n: http://cs231n.github.io/convolutional-networks/
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• Finish: neural networks

• Advice about git for final project

• Go over Midterm 2



Github workflow 
with your partner

Im
age: m

odified from
 https://gcapes.github.io/

git
 push

git
 pull

Remote repo

Local repos

git pushgit pull
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