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Admin

 Exam will be handed back on Tuesday

* Last candidate talk at 4:15pm TODAY

— Tea at 4pm
— Student lunch Friday 12:30-1:30pm



Outline for November 30

e Gaussian Mixture Models (GMMs)

e Kernel Density Estimation (KDE)

* Missing data

* Begin: neural networks



Outline for November 30

e Gaussian Mixture Models (GMMs)
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Density Estimation with Gaussian Mixture Models
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(e) EM after 10 iterations.

(f) EM after 62 iterations.
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Outline for November 30

e Kernel Density Estimation (KDE)






KDE (Kernel Density Estimation)
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Figure 11.9 from MML textbook



Outline for November 30

* Missing data



Types of missing data

* MCAR: Missing Completely At Random. Not
related to:

— Specific values
— Observed responses

* MAR: Missing At Random. Not related to:

— Specific values

* MNAR: Missing Not At Random

Reference: “The prevention and handling of the missing data” Kang (2013)



Techniques for handling missing data

* Try to prevent the problem in the first place
— Careful study design, follow-up with participants, etc

 Omit rows with missing data (reduces n)

* Omit only when value is needed

— i.e. Naive Bayes, per-feature estimates

 Mean substitution (per feature)

Reference: “The prevention and handling of the missing data” Kang (2013)



Techniques for handling missing data

* Imputation
— Use similar examples to guess the missing values

— Can be done locally or globally

e Last observation carried forward

— Useful for time-series data

Reference: “The prevention and handling of the missing data” Kang (2013)



Outline for November 30

* Begin: neural networks



Adapted from: “Know Your Meme”

MACHINE LEARNING

Vul(w, b, a) = Zay()z() 0

This implies that
w= Z iy D@,
i=1

As for the derivative with respect to b, we obtain
9 o
—L (w, b, ) Z oy = 0.

If we take the definition of w in Equation (9) and plug that back int
Lagrangian (Equation 8), and simplify, we get

L(w,b,a) E(y - = Z y@yUla, i () z0) — qu y@. %4
But from Equation (10), the last term must be zero, so we obtain
L(w,b,a) Zaf—ZyUy(Ja(yf(

other computer
scientists think | do

What |
think | do

>>> from sklearn import svm What |
>>> import tensorflow as tf [GELAE

What mathematicians think | do




Biological Inspiration
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Figure: Stanford CS231n http://cs231n.github.io/neural-networks-1/



Goal: learn from complicated inputs

° Y, | glasses?

Y, | smiling?

Y3 | identity?

parameters

input data

Image: Labeled Faces in the Wild (UMass)



ldea: transform data into lower dimension

input data




Multi-layer networks = “deep learning”

Y,  glasses?

Y, | smiling?

Y3 | identity?

parameters

hidden

layer 2
hidden
input data layer 1




History of Neural Networks

Perceptron can be interpreted as a simple
neural network

Misconceptions about the weaknesses of
perceptrons contributed to declining funding
for NN research

Difficulty of training multi-layer NNs
contributed to second setback

Mid 2000’s: breakthroughs in NN training
contribute to rise of “deep learning”



number of articles

Number of papers that mention
“deep learning” over time

1000}
800 2006: Hinton and Salakhutdinov
make a break-through in
initializing deep learning networks
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Big picture for today

* Neural networks can approximate any function!



Big picture for today

* Neural networks can approximate any function!

* For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs
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the loss between its output and the true output



Big picture for today

Neural networks can approximate any function!

For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

We will train our network by asking it to minimize
the loss between its output and the true output

We will use SGD-like approaches to minimize loss
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Option 1: sigmoid function

* |[nput: all real numbers, output: [0, 1]




Option 2: hyperbolic tangent

* |[nput: all real numbers, output: [-1, 1]

tanh(x) =

€ — €

et 4+ e~ 7

..........

..........




Option 3: Rectified Linear Unit (ReLU)

* Return x if x is positive (i.e. threshold at 0)

10 F

f(z) = max(0, z)

....................




Pros and Cons of Activation Functions

1) Sigmoid .

(-) When input becomes very positive or very negative,

gradient approaches 0 (saturates and stops gradient descent)

* (-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

* (+) Derivative is easy to compute given function value!

http://cs231n.github.io/neural-networks-1/



http://cs231n.github.io/neural-networks-1/

Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

(-) When input becomes very positive or very negative,
gradient approaches 0 (saturates and stops gradient descent)
(-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

(+) Derivative is easy to compute given function value!

(-) Still has a tendency to prematurely kill the gradient

(+) Zero-centered so we get a range of gradients

(+) Rescaling of sigmoid function so derivative is also not too
difficult

http://cs231n.github.io/neural-networks-1/
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Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

3) RelLU

(-) When input becomes very positive or very negative,
gradient approaches 0 (saturates and stops gradient descent)
(-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

(+) Derivative is easy to compute given function value!

(-) Still has a tendency to prematurely kill the gradient

(+) Zero-centered so we get a range of gradients

(+) Rescaling of sigmoid function so derivative is also not too
difficult

(+) Works well in practice (accelerates convergence)

(+) Function value very easy to compute! (no exponentials)
(-) Units can have no signal if input becomes too negative
throughout gradient descent

http://cs231n.github.io/neural-networks-1/
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Goal: find a function between input and output

° Y, glasses?

’ >
2
o o K1) Y, | smiling?
TR

| | \ ( ) Y,  identity?

parameters

input data




First idea: one hidden layer




Second idea: more hidden layers (“deep” learning)

hidden
input data layer 1




Flatten pixels of image into a single vector




Detour to autoencoders




Detour to autoencoders
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Detour to autoencoders
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Use unsupervised pre-training to find a function
from the input to itself




Hidden units can be interpreted as edges

hidden
input data layer 1 reconstructed input




Now: throw away reconstruction and input

hidden
input data layer 1




Now: throw away reconstruction and input
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Then repeat the entire process for each layer
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Then repeat the entire process for each layer




Then repeat the entire process for each layer




Then repeat the entire process for each layer
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In the last layer, use the outputs (supervised)

Y, | glasses?
Y, | smiling?

Y, | identity?

parameters
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In the last layer, use the outputs (supervised)

Y, | glasses?
Y, | smiling?

Y, | identity?

parameters

= )
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layer 2




Finally, “fine-tune” the entire network!

Y, | glasses?

Y, | smiling?

Y, | identity?

parameters

hidden
input data layer 1




