CS 260: Foundations of Data Science

Prof. Sara Mathieson Fall 2023

Admin

- Lab 6 graded
- Presentation schedule up
- Lab today
 - Final project check-ins with all groups
 - Try to come to the same lab as your partner
- Candidate talk at 4:15pm TODAY
 - Tea at 4pm
 - Student lunch Wednesday 12:30-1:30pm

Clustering overview

• K-means

Clustering overview

• K-means

Applications of clustering

 Cluster genes with similar expression patterns

Michael B. Eisen,^{*} Paul T. Spellman,^{*} Patrick O. Brown,[†] and David Botstein^{*‡}

Applications of clustering

Image segmentation: cluster similar regions of an image

Applications of clustering

• Clustering in social graphs

Image: https://griffsgraphs.wordpress.com/2012/07/02/a-facebook-network/

Two main types of clustering

- Flat/Partitional:
 - K-means
 - Gaussian mixture models
- Hierarchical:
 - Agglomerative: bottom-up
 - Divisive: top-down
 - Examples: UPGMA and Neighbor Joining

Hierarchical clustering example: trees

Credit: Pearson Education, Benjamin Cummings

Are pandas more closely related to bears or raccoons?

Are pandas more closely related to bears or raccoons?

Credit: Ameet Soni

Are pandas more closely related to bears or raccoons?

Credit: Ameet Soni

Clustering overview

• K-means

Discriminative vs. Generative

- <u>Discriminative</u>: finds a decision boundary
 - Logistic regression, K-means
- <u>Generative</u>: estimates probability distributions
 - Naïve Bayes, Gaussian Mixture Models

algorithm R = 1M-step Ma

..

> inidial: tadion Stopping criteria rondemly from o max # iters exceeded (T) MCSS 070

landor 2.2 $C_{2}^{(1)} = \{\vec{x}_{1}, \vec{x}_{5}\}$ $M_{2}^{(2)} = \{\vec{3}, 5\}$ 0.5Ka Kz $C_{z} = \xi \vec{X}_{z}$ $M_{-step} = \begin{bmatrix} 2 & 5 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$

л Х $M(22 = 1_5 + (12)_5 + (12)_5 = 8$

Clustering overview

• K-means

Problems with K-means * not generative (could not create a new data point) X does not account fordifforent cluster 3 OW * does not allow points to belong to multiple chusters.

over cluster (GMM)Mixture Models Gaussian with Mr. Jk Likelihood K=1 0.20.1 Junk, S 1= hxk

EM for GMM milialitation Estep 'Soft' assignment Wik = Prob that Xi came from cluster k * TTR = K (Uniform) $\omega_{ik} = p(k|\vec{x}_i) = \frac{p(k)p(\vec{x}_i|k)}{p(\vec{x}_i)}$ $=\frac{\pi_{k}\mathcal{M}(\vec{x}_{i},\vec{\mu}_{k},\sigma_{k}^{2})}{\underset{k'=1}{\overset{k'}{=}}\pi_{k'}\mathcal{M}(\vec{x}_{i},\vec{\mu}_{k'},\sigma_{k'}^{2})}$ " The = Sample variance of all points closest to each mean

Example of GMMs with different covariance constraints on the Iris flower data

