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Admin

* Midterm 1 due today!
* No lab today

* After Thanksgiving break
— 3 classes on advanced Data Science topics
— 3 classes for project presentations
— Final project check-ins during lab



Outline for November 21

e Revisit data visualization

e Real-world data science exercise

* Begin: clustering (K-means)



Outline for November 21

e Revisit data visualization



Visualization can illuminate...
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... but also mislead
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... but also mislead

Gun deaths in Florida
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Swimming pool drownings
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... but also mislead
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Visualizing amounts

Bars Bars Dots

Figure from “Fundamentals of Data Visualization” by Claus Wilke



Visualizing amounts

Grouped Bars Grouped Bars Stacked Bars Stacked Bars
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Figure from “Fundamentals of Data Visualization” by Claus Wilke



Visualizing distributions

Histogram Density Plot Cumulative Density

Figure from “Fundamentals of Data Visualization” by Claus Wilke



Visualizing distributions

Boxplots

T

Stacked Histograms

b
e

Violins

Overlapping Densities

0‘0

.

Strip Charts Sina Plots
- }i‘é " .:.. - ?‘.:‘:.; Y‘ ‘-g
4 & M ) "'; R v+ %

Ridgeline Plot

b

Figure from “Fundamentals of Data Visualization” by Claus Wilke



Alternative to PCA



Reducing dimensions

e How?

— Project the
points from high-
dimensions to
low dimensions

|
Variance

Prefer the blue line because more spread of the original data is
represented—> Principal Component Analysis (PCA)



Reducing dimensions

e How?

— Project the
points from high-
dimensions to
low dimensions

— Reconstruct high
dimensional
relationships in
low dimensions

Tetrahedron with
length 1 sides.

All pairwise
distances between
the four points =1

Try to arrange four
points in 2D such
that pairwise
distances are as
closest to the
original pairwise
distances



Reducing dimensions

e How?

— Project the
points from high-
dimensions to
low dimensions

— Reconstruct high
dimensional
relationships in
low dimensions

Tetrahedron with
length 1 sides.

All pairwise
distances between
the four points =1




A lot of the time we want to create
clusters.

Distances in the original data may not
be meaningful

So we want some kind of embedding
that preserves clustering

Linear projection (e.g. PCA) is only one
type of embedding



What if the overall distances
are not meaningful?

Focus on your neighbors



What if the overall distances
are not meaningful?

Focus on your neighbors



tSNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance*

Wl

X Y

\ | *Note: the actual algorithm uses notions of
o . probability (i.e., probability of finding Y at
Original distance some distance from X). | use notion of

distance as a proxy



tSNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance*

Differences in small distances tend to
get squished
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tSNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance*

Differences in small distances tend to

get squished
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tSNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance*
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Difference in large
distances tend to get
REALLY squished



tSNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance*
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distances tend to get
REALLY squished



tSNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance*

A

Difference in large
distances tend to get
REALLY squished

Differences in small distances tend to

get squished ,\

These two in combination tend to

. . emphasize intermediate distances
Original distance emphasizing clusters

X
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Preserve structure

Preserve distance

How to visualize data always depends on the data, and the question

There is rarely if ever a single correct approach



Outline for November 21

e Real-world data science exercise



Discussion: admissions at Haverford

* Haverford has suddenly started receiving 10x
more applications than usual

* You are tasked with creating an algorithm to
determine whether or not an applicant should
be admitted

* Questions:
— How would you encode features?

— How would you use past admission data to train?
— What loss function are you trying to optimize?



Outline for November 21

* Begin: clustering (K-means)



Machine learning and
data mining

Problems [show]
Supervised learning [hide]

(classification - regression)
Decision trees + Ensembles (Bagging,
Boosting, Random forest) * k-NN -
Linear regression « Naive Bayes *

Sup ervised Neural networks + Logistic regression * Unsup ervise d

Perceptron + Relevance vector machine (RVM)
L ° . + Support vector machine (SVM) L ° .
earning: e — — Z carning:
BIRCH - Hierarchical - k-means *

makes use of examples || couionmainzsion cw- Learn underlying

DBSCAN - OPTICS - Mean-shift

where we know the Plariiceatty racholcs ws | structure or features

Factor analysis - CCA - ICA - LDA + NMF -

underlying “truth” ol sk without labeled

Structured prediction [hide]

(lab el/Output) Graphical models (Bayes net, CRF, HMM) training data

Anomaly detection [hide]

k-NN -+ Local outlier factor

Neural nets [hide]
Autoencoder + Deep learning *
Multilayer perceptron + RNN -

Restricted Boltzmann machine - SOM -
Convolutional neural network

Reinforcement Learning [hide]

Q-Learning - SARSA *
Temporal Difference (TD)

Theory [show]
Machine learning venues [show]

{{ Machine learning portal



Unsupervised learning: 3 main areas

1) Clustering: group data points into clusters
based on features only

2) Dimensionality reduction: remove feature
correlation, compress data, visualize data

3) Structured prediction: model latent variables
(example: Hidden Markov Models)
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Unsupervised learning examples from
biology: structured prediction

\

Genes mirror geography within Europe (2008)



Unsupervised learning examples from
biology: structured prediction

5-10 kyr 50-100 kyr 0.5-1 Myr 5-10 Myr

Population size (scaled in units of 4uN x 103)

I
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The complete genome sequence of a Neanderthal from the Altai Mountains, Prufer et al (2014)
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