Midterm 2 Review

1. Bootstrap. With $n=2$ training examples, how many unique datasets can I generate with bagging? What about $n=3$?
2. Central Limit Theorem. Going back to our class year example, say we expect the following probabilities of each class year: $[0.125,0.125,0.25,0.5]$ for [first-year, sophomore, junior, senior]. Let Y denote this random variable for year.
(a) If the class years are represented as the values $[0,1,2,3]$ (respectively), what is the mean (expected value) $E[Y]$ of this distribution?
(b) Set up a computation for the variance of this distribution. The result of this computation (double check after class) is $\operatorname{Var}(Y)=1.109375$.
(c) In reality we observe a class with $n=40$ students and sample mean $\bar{Y}_{n}=1.9$. We wish to test the hypothesis that there are more first-years and sophomores in the class than we expected. First, use the CLT to compute the associated Z-score.
(d) The associated p-value is 0.08833 (double check after class). What do you conclude about your observed data?
3. Entropy. Consider the two feature choices below (for the heart disease dataset), and their associated splits. Counts of label -1 vs. 1 are shown in brackets.

(a) After splitting the data based on each feature, what is the classification error for each tree?
(b) Before considering the feature, what is $H(Y)$, the entropy of the initial partition? (don't need to find a value, just set up the equation)
(c) Which tree do you think produces more information gain?
4. The figure below shows the first two PCs of genome-wide data from 777 present-day people from West Eurasia, along with three ancient British people who lived 9000, 5000 and 4000 years ago (labeled stars, "BP" means "[years] Before Present").

(a) What can you infer about the relationship between each of the ancient people and present-day Europeans?
(b) What does this figure suggest about the history of Britain, and the people living there, over the past ten thousand years?
