Principal Components Analysis (PCA)

Step 1: Get the data. In this small example we will have $n=6$ data points and $p=2$ features. In reality we would have many more of each, and sometimes $p \gg n$. The data matrix with n rows and p columns is called $X_{\text {orig }}$:

$$
X_{\text {orig }}=\left[\begin{array}{ll}
0 & 1 \\
0 & 1 \\
0 & 1 \\
1 & 0 \\
1 & 0 \\
1 & 0
\end{array}\right]
$$

$X=[$

Step 2: Subtract off the column-wise mean from each column (feature) to obtain X (fill in above). The mean of column f is:

$$
\bar{f}=\frac{1}{n} \sum_{i=1}^{n} f_{i}
$$

Step 3: Compute the covariance of each pair of features in X to obtain the $p \times p$ covariance matrix A. The covariance of feature f with feature g is:

$$
\operatorname{cov}(f, g)=\frac{1}{n-1} \sum_{i=1}^{n}\left(f_{i}-\bar{f}\right)\left(g_{i}-\bar{g}\right)
$$

Note that in our case, we have set all the means to be 0 . Also note that variance is a special case when $f=g$:

$$
\operatorname{cov}(f, f)=\operatorname{var}(f)=\frac{1}{n-1} \sum_{i=1}^{n}\left(f_{i}-\bar{f}\right)^{2}
$$

Fill in A below:

$$
A=[\square
$$

Step 4: Compute the eigenvalues (λ_{1}, λ_{2} for $p=2$) and eigenvectors $\left(\vec{v}_{1}, \vec{v}_{2}\right)$ of A. The eigenvectors (sorted by eigenvalue) will become the directions of our principal components (i.e. new coordinate system). We want our eigenvectors and eigenvalues to satisfy:

$$
A \vec{v}=\lambda \vec{v} \quad \Rightarrow \quad \operatorname{det}(A-\lambda I)=0
$$

If you've had linear algebra, verify that the eigenvalues are $\lambda_{1}=\frac{3}{5}$ and $\lambda_{2}=0$, and the eigenvectors are $\vec{v}_{1}=[1,-1]^{T}$ and $\vec{v}_{2}=[1,1]^{T}$. Otherwise use these directly in Step 5 .

Step 5: Transform the data X using the eigenvector matrix W (one eigenvector on each column, sorted by eigenvalue). The number of eigenvectors we use corresponds to the number of dimensions we retain. Say we want to retain r dimensions, then we would obtain the transformed data $T_{r}=X W_{r} . T_{r}$ will be an $n \times r$ matrix. In our case, use $r=2$ and compute T_{r}.

$$
T_{2}=X W_{2}=[\square]=[
$$

Step 6: Finally, plot the transformed data T_{r} with principal component 1 (PC1) on the x-axis and PC2 on the y-axis. We could plot further PCs on different coordinate systems when $p>2$.

