Principal Components Analysis (PCA) Step 1: Get the data. In this small example we will have n=6 data points and p=2 features. In reality we would have many more of each, and sometimes p>>n. The data matrix with n rows and p columns is called X_{orig} : $$X_{ m orig} = egin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}$$ $X = egin{bmatrix} X = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 &$ Step 2: Subtract off the column-wise mean from each column (feature) to obtain X (fill in above). The mean of column f is: $$\overline{f} = \frac{1}{n} \sum_{i=1}^{n} f_i$$ Step 3: Compute the covariance of each pair of features in X to obtain the $p \times p$ covariance matrix A. The covariance of feature f with feature g is: $$cov(f,g) = \frac{1}{n-1} \sum_{i=1}^{n} (f_i - \overline{f})(g_i - \overline{g})$$ Note that in our case, we have set all the means to be 0. Also note that variance is a special case when f = g: $$cov(f, f) = var(f) = \frac{1}{n-1} \sum_{i=1}^{n} (f_i - \overline{f})^2$$ Fill in A below: $$A = \left[\begin{array}{c} \\ \end{array} \right]$$ Step 4: Compute the eigenvalues $(\lambda_1, \lambda_2 \text{ for } p = 2)$ and eigenvectors (\vec{v}_1, \vec{v}_2) of A. The eigenvectors (sorted by eigenvalue) will become the directions of our principal components (i.e. new coordinate system). We want our eigenvectors and eigenvalues to satisfy: $$A\vec{v} = \lambda \vec{v} \implies \det(A - \lambda I) = 0$$ If you've had linear algebra, verify that the eigenvalues are $\lambda_1 = \frac{3}{5}$ and $\lambda_2 = 0$, and the eigenvectors are $\vec{v}_1 = [1, -1]^T$ and $\vec{v}_2 = [1, 1]^T$. Otherwise use these directly in Step 5. Step 5: Transform the data X using the eigenvector matrix W (one eigenvector on each column, sorted by eigenvalue). The number of eigenvectors we use corresponds to the number of dimensions we retain. Say we want to retain r dimensions, then we would obtain the transformed data $T_r = XW_r$. T_r will be an $n \times r$ matrix. In our case, use r = 2 and compute T_r . Step 6: Finally, plot the transformed data T_r with principal component 1 (PC1) on the x-axis and PC2 on the y-axis. We could plot further PCs on different coordinate systems when p > 2. Sara Mathieson Page 2 of 2