## CS 260: Foundations of Data Science

### Prof. Sara Mathieson Fall 2023



## Admin

- Lab 6 posted (Information Theory)
  - Due next Wednesday Nov 1

Lab 4 grades up soon

• Continuous features

• Introduction to logistic regression

• Cost function and SGD for logistic regression

• Connection to cross entropy

Continuous features

• Introduction to logistic regression

• Cost function and SGD for logistic regression

Connection to cross entropy

## **Continuous Features**

(do this for the TRAIN only!)

| X  | Υ |
|----|---|
| 10 | Y |
| 7  | Y |
| 8  | Ν |
| 3  | Y |
| 7  | Ν |
| 12 | Y |
| 2  | Y |

1) Sort examples based on given feature

| 2 | 3 | 7 | 7 | 8 | 10 | 12 |
|---|---|---|---|---|----|----|
| Y | Y | Y | Ν | Ν | Y  | Y  |

## **Continuous Features**

(do this for the TRAIN only!)

| X  | Υ |
|----|---|
| 10 | Y |
| 7  | Y |
| 8  | Ν |
| 3  | Y |
| 7  | Ν |
| 12 | Y |
| 2  | Y |

1) Sort examples based on given feature

|   |   |   |   |   | 10 |   |
|---|---|---|---|---|----|---|
| Y | Y | Y | Ν | Ν | Y  | Y |

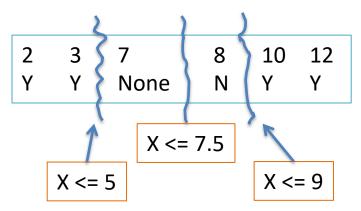
2) Different label with same feature value, collapse to "None"

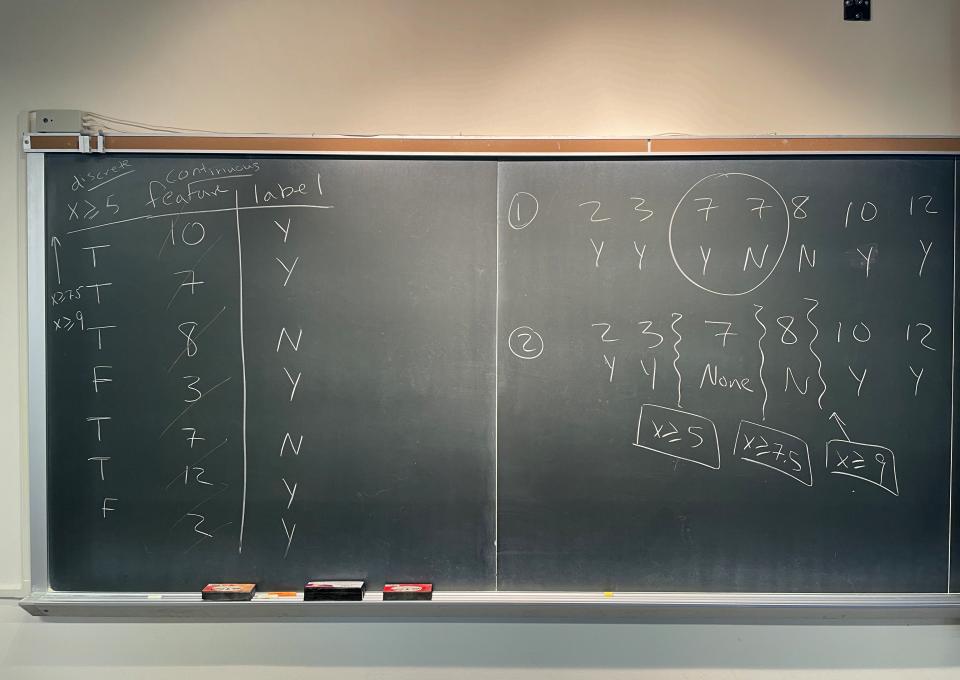
| 2 | 3 | 7    | 8 | 10 | 12 |
|---|---|------|---|----|----|
| Y | Y | None | Ν | Y  | Y  |

## **Continuous Features**

(do this for the TRAIN only!)

| X  | Υ |
|----|---|
| 10 | Y |
| 7  | Y |
| 8  | Ν |
| 3  | Y |
| 7  | Ν |
| 12 | Y |
| 2  | Y |


1) Sort examples based on given feature


| 2 | 3 | 7 | 7 | 8 | 10 | 12 |
|---|---|---|---|---|----|----|
| Y | Y | Y | Ν | Ν | Y  | Y  |

2) Different label with same feature value, collapse to "None"

| 2 | 3 | 7    | 8 | 10 | 12 |
|---|---|------|---|----|----|
| Y | Y | None | Ν | Y  | Y  |

3) Whenever label changes, make a feature (use avg)





# **Continuous Features (Handout 14)**

(do this for the TRAIN only!)

| temp | Υ |
|------|---|
| 80   | Y |
| 48   | Y |
| 60   | Ν |
| 48   | Y |
| 40   | Ν |
| 48   | Y |
| 90   | Y |

1) Sort examples based on feature "temp"

2) Different label with same feature value, collapse to "None"

3) Whenever label changes, make a feature (use avg)

• Continuous features

• Introduction to logistic regression

• Cost function and SGD for logistic regression

Connection to cross entropy

**Case Study**: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode *y* to make it real-valued?

2) What issues arise with making y real-valued?

3) What if you just had two outcomes (i.e. stroke and drug overdose) -- why is linear regression still not a good choice?

**Case Study**: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode *y* to make it real-valued?

You could choose stroke=0, drug overdose=1, epileptic seizure=2 (or some permutation)

2) What issues arise with making y real-valued?

3) What if you just had two outcomes (i.e. stroke and drug overdose) -- why is linear regression still not a good choice?

**Case Study**: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode *y* to make it real-valued?

You could choose stroke=0, drug overdose=1, epileptic seizure=2 (or some permutation)

2) What issues arise with making y real-valued?

Assumes some *ordering* of the outcomes that is probably not there!

3) What if you just had two outcomes (i.e. stroke and drug overdose) -- why is linear regression still not a good choice?

**Case Study**: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

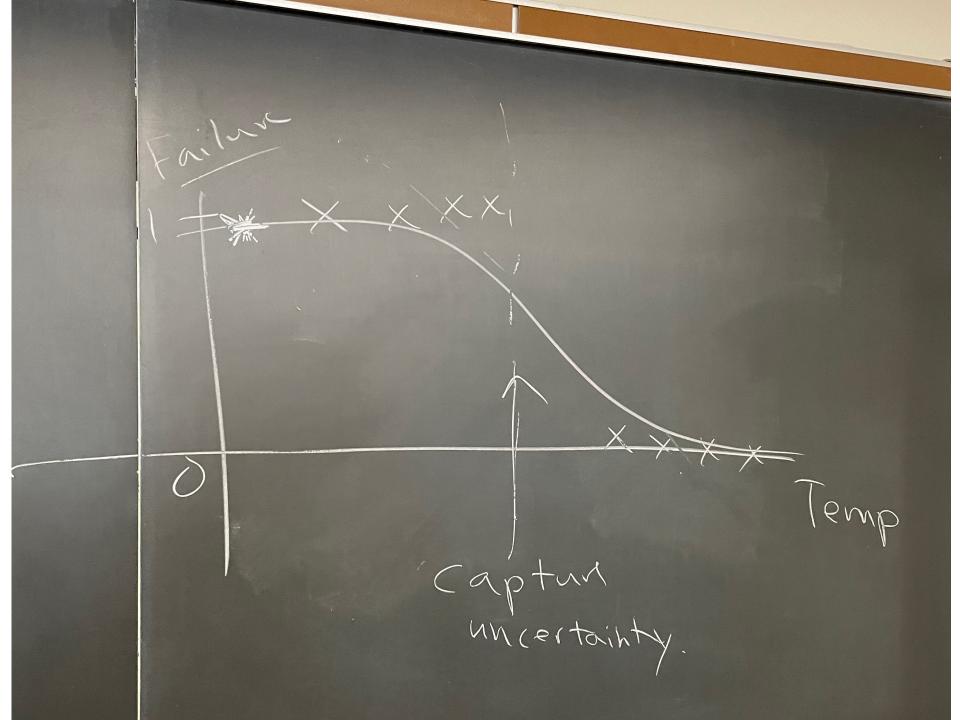
- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode *y* to make it real-valued?

You could choose stroke=0, drug overdose=1, epileptic seizure=2 (or some permutation)

2) What issues arise with making y real-valued?

Assumes some *ordering* of the outcomes that is probably not there!

3) What if you just had two outcomes (i.e. stroke and drug overdose) -- why is linear regression still not a good choice?


The range of a linear function (i.e. y values) is  $[-\infty, \infty]$ , but we want [0, 1]

# Challenger Explosion Data

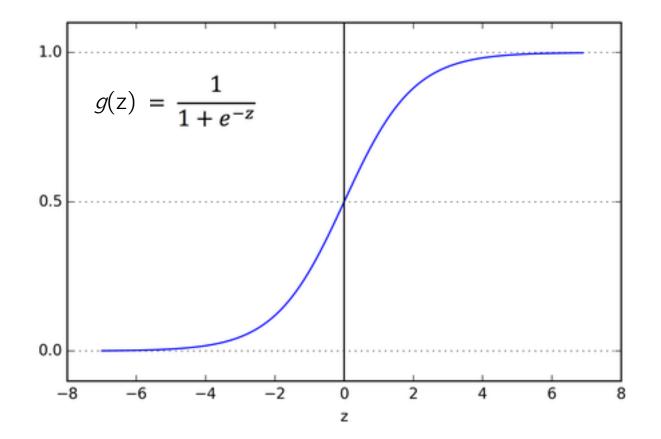



Image: NASA

| 1  | Date       | Temperature | Damage Incident     |
|----|------------|-------------|---------------------|
| 2  | 04/12/1981 | 66          | 0                   |
| 3  | 11/12/1981 | 70          | 1                   |
| 4  | 3/22/82    | 69          | 0                   |
| 5  | 6/27/82    | 80          | NA                  |
| 6  | 01/11/1982 | 68          | 0                   |
| 7  | 04/04/1983 | 67          | 0                   |
| 8  | 6/18/83    | 72          | 0                   |
| 9  | 8/30/83    | 73          | 0                   |
| 10 | 11/28/83   | 70          | 0                   |
| 11 | 02/03/1984 | 57          | 1                   |
| :  |            |             |                     |
| 23 | 10/30/85   | 75          | 1                   |
| 24 | 11/26/85   | 76          | 0                   |
| 25 | 01/12/1986 | 58          | 1                   |
| 26 | 1/28/86    | 31          | Challenger Accident |



## Logistic (sigmoid) function



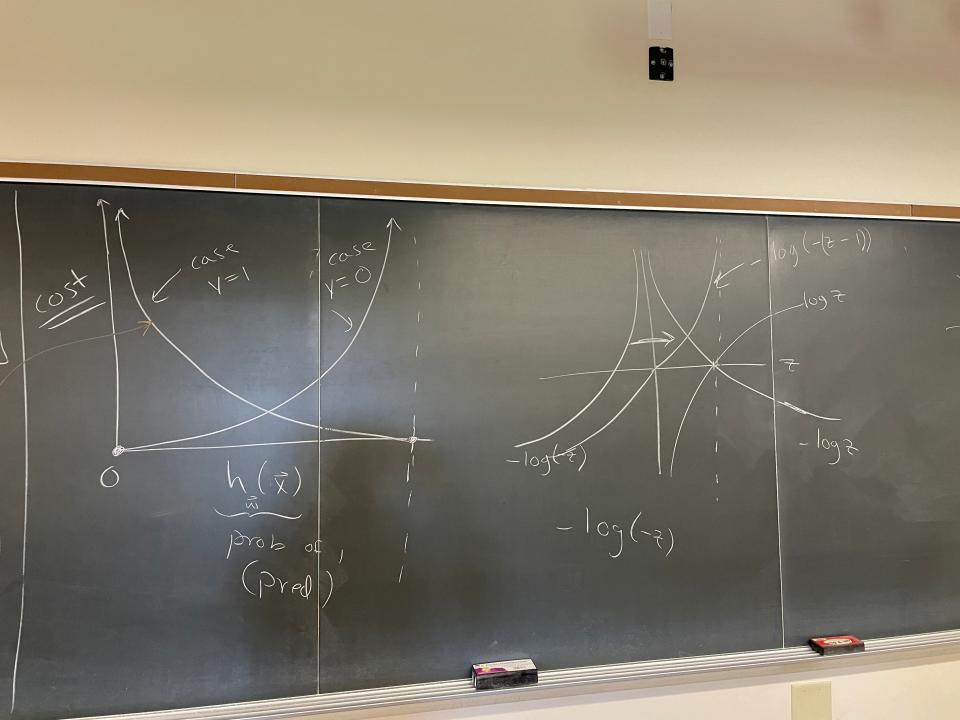
Regression be: 100;520 Lov YE 50, B tior (W·X) N -23 00 Sigmoid /logistic Mear regression 5)(7) 2-30,9(2)-3 0.5 -0) →\_~~, )(z) → () 2=0,9(2)=5 0 > classify  $\mathbb{R}$  $\mathcal{O}(z)$ 70-2 Probal; kity

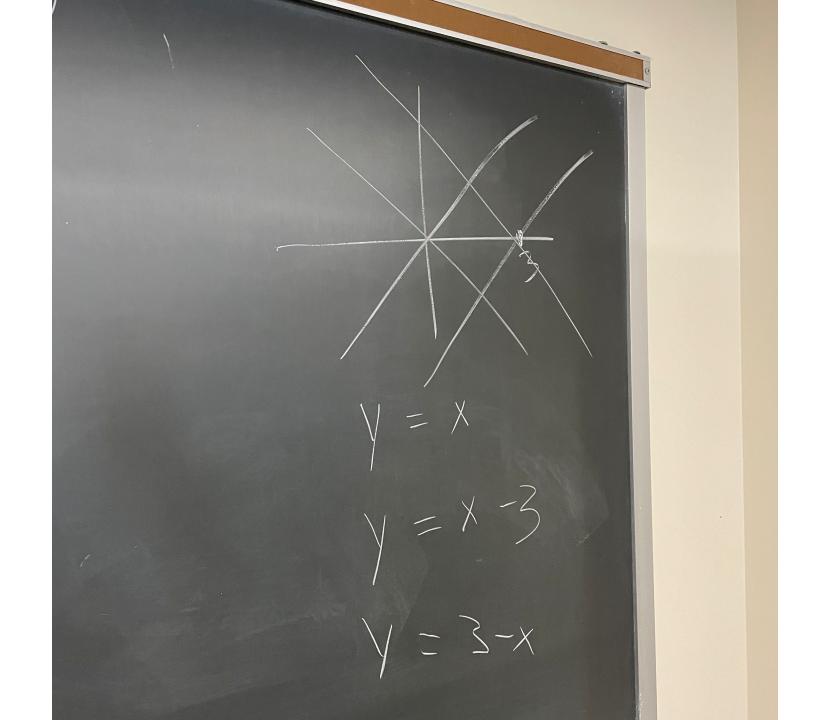
. 9

already have is (model) pred 1 m cf  $3 - 2 \times \geq 0 / product$ Bif p=1 (one feature)  $\chi \leq \frac{3}{2}$ (2).  $(z) \rightarrow (z)$  $w_{X} \geq -w_{o}$  $\sim$ ≥) - N) Dredict

\_\_\_\_\_

• Continuous features


• Introduction to logistic regression


• Cost function and SGD for logistic regression

Connection to cross entropy

 $P(1-h_{1})\cdot h\cdot h\cdot (1-h)(1-h)h$ How to find 3? need a cost function [ikelihood] = [0, 1, 1, 0, 0]  $log(a^b)$ -> L ( 7 h-1  $= b \log(a)$ propot -- 06

take 109 \_ cost want low ,f y=0 if y=1  $\mathcal{T}(\vec{w}) = \sum_{i=1}^{\infty} \left[ \gamma_i \log(h_{\vec{w}}(\vec{x}_i)) + (1-\gamma_i)\log(1-h_{\vec{w}}(\vec{x}_i)) \right]$ X Y Single example  $\sum_{x} P_{x} \log P_{x}$  $\overline{J}(\overline{\omega}) = \left\{ \overline{-\gamma} \log h_{\widetilde{\omega}}(\overline{x}) = -\log h_{\widetilde{\omega}}(\overline{x}) \right\}$  $\left(-(1-\gamma)\log(1-h_{\mathfrak{s}}(x))\right)$ it y= (f Y=0) 1+ e w.x (-10g (1-4(R))





**()** () () take (hint: chain rule)  $\overline{\mathcal{X}} - \overline{\mathcal{Y}} \left( h_{\overline{\mathcal{X}}} (\overline{x}_{i}) - \overline{\mathcal{Y}}_{i} \right) \overline{\overline{x}}_{i} \right)$  linear rog on  $h_{\overline{\mathcal{X}}} (\overline{x}) = \frac{1}{1+e^{\overline{\mathcal{X}}_{i}}}$ 

Stochastic Gradient Descent for Logistic Regression (binary classification)

```
set w = 0 vector
while cost J(w) still changing:
    shuffle data points
    for i = 1...n:
        w <- w - alpha(derivative of J(w) wrt x<sub>i</sub>)
        store J(w)
```

## 3 important pieces to SGD

• Hypothesis function (prediction)

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = p(y = 1 | \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w} \cdot \boldsymbol{x}}}$$

## 3 important pieces to SGD

• Hypothesis function (prediction)

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = p(y = 1 | \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w} \cdot \boldsymbol{x}}}$$

• Cost function (want to minimize)

$$J(\boldsymbol{w}) = -\sum_{i=1}^{n} y_i \log h_{\boldsymbol{w}}(\boldsymbol{x}_i) + (1-y_i) \log(1-h_{\boldsymbol{w}}(\boldsymbol{x}_i))$$

## 3 important pieces to SGD

• Hypothesis function (prediction)

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = p(y = 1 | \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w} \cdot \boldsymbol{x}}}$$

• Cost function (want to minimize)

$$J(\boldsymbol{w}) = -\sum_{i=1}^{n} y_i \log h_{\boldsymbol{w}}(\boldsymbol{x}_i) + (1 - y_i) \log(1 - h_{\boldsymbol{w}}(\boldsymbol{x}_i))$$

Gradient of cost wrt single data point x<sub>i</sub>

$$\nabla J_{\boldsymbol{x}_i}(\boldsymbol{w}) = (h_{\boldsymbol{w}}(\boldsymbol{x}_i) - y_i)\boldsymbol{x}_i$$

• Continuous features

• Introduction to logistic regression

• Cost function and SGD for logistic regression

• Connection to cross entropy