CS 260: Foundations of Data Science

Prof. Sara Mathieson Fall 2023

Admin

- Lab 5 due Wednesday (tomorrow)
- Lab 6 posted tomorrow
- Midterm 1 returned today

- Lab today: Lab 5 implementation advice and check-ins
 - If you're *completely* finished, don't need to attend, but please email me
 - Otherwise will check in about Lab 5

Lab 5 implementation

Partition contains:

Features dictionary F:
 E = {age: [Senior Middle age Middle age

F = {age: [Senior, Middle-age, Mid-adult, Young-adult, Child], workclass: [Private, Local-gov...] ... }

- List of Examples
 - Each example contains

features = {age: Senior, workclass: Private ... }
label = 1 (Female)

• Entropy and Shannon encoding

• Information gain for selecting features

• Go over Midterm 1

• Entropy and Shannon encoding

• Information gain for selecting features

• Go over Midterm 1

Decision Trees use entropy to select best features

Examples

Medical diagnostics

• Credit risk analysis

Modeling calendar scheduling preferences

Decision Trees in Chemistry reactions

- Example of decision trees in practice
- Use decision trees to interpret another ML algorithm (SVMs)

Machine-learning-assisted materials discovery using failed experiments

Paul Raccuglia, Katherine C. Elbert, Philip D. F. Adler, Casey Falk, Malia B. Wenny, Aurelio Mollo, Matthias Zeller, Sorelle A. Friedler [™], Joshua Schrier [™] & Alexander J. Norquist [™]

Nature **533**, 73–76 (05 May 2016) | Download Citation *±*

How do we choose the best feature?

Single feature model + evaluate with a ROC curve (Lab 4)

 What feature gives us the most information about the label? (Lab 6)

• • •

01. 5,5= 1-1-7 pors e half as likely I twile as many bits! $D \cdot 2 + D \cdot 2$ ix they binary 0-3 + 5 = 1.4 + 0.2 + 1.1+ . 2 decima) in binany 000

H bits $H(Y) = \sum_{i=1}^{n} p(y=c) \log_2(p(y=c))$ $A \in Cevals(y)$ - NXXON label H(yeax) = Z.1+ 4.2+ 8.3+ 8.3+ 8.3 $= [1.75] b;t_5$ 1+2+3+3=2,78 \neq

• Entropy and Shannon encoding

• Information gain for selecting features

• Go over Midterm 1

Information gain = \bigcirc G(Y, X) = H(Y) - H(Y||X)Hondon 13 Want low want high Want the feature 11 values/leaves that maximizes into gain

Handout 13

e. 0, Handont 13 for Labo $= -\left(\frac{2}{3}\log_{2}\frac{2}{3} + \frac{1}{3}\log_{2}\frac{1}{3}\right) = 0.92$ E H(L)3 Gam(L, T) = 0.92 - 0.61 = 0.316.92 - 0.61 = 0.616.92 - 0.61 = 0.616.92 - 0.61 = 0.616.92 - 0.616.92 - 0.616.92 - 0.616.93 - 0.617.93 - 0.617.93 - 0.617.94 - 0.617.94 - 0.617.95 rounding

Movie	Туре	Length	Director	Famous actors	Liked?
m1	Comedy	Short	Adamson	No	Yes
m2	Animated	Short	Lasseter	No	No
m3	Drama	Medium	Adamson	No	Yes
m4	Animated	Long	Lasseter	Yes	No
m5	Comedy	Long	Lasseter	Yes	No
m6	Drama	Medium	Singer	Yes	Yes
m7	Animated	Short	Singer	No	Yes
m8	Comedy	Long	Adamson	Yes	Yes
m9	Drama	Medium	Lasseter	No	Yes

Handout 13

P(Li = yes) = 2/3H(Li) = 0.92

 $\begin{array}{l} H(Li \mid T) = 0.61 \\ H(Li \mid Le) = 0.61 \\ H(Li \mid D) = 0.36 \\ H(Li \mid F) = 0.85 \end{array} \hspace{1.5cm} \mbox{MIN ENTROPY}$

Start of the tree

• Entropy and Shannon encoding

• Information gain for selecting features

• Go over Midterm 1

Midterm 1 Grades

- 90-100% A
- 80-89% B
- 70-79% C
- Below 70%: please meet with me
- Below 60%: not passing

• Any questions about the exam: bring to me within one week

Midterm solutions not posted online

• Entropy and Shannon encoding

Information gain for selecting features

• Go over Midterm 1