Naive Bayes
Say we have two tests for a specific disease. Each test (features f_{1}, f_{2}) can come back either positive "pos" or negative "neg", and the true underlying condition of the patient is represented by y ($y=1$ is "healthy" and $y=2$ is "disease"). We observe this training data where $n=7$ and $p=2$:

\boldsymbol{x}	f_{1}	f_{2}	y
\boldsymbol{x}_{1}	pos	neg	1
\boldsymbol{x}_{2}	pos	pos	2
\boldsymbol{x}_{3}	pos	neg	2
\boldsymbol{x}_{4}	neg	neg	1
\boldsymbol{x}_{5}	pos	neg	2
\boldsymbol{x}_{6}	neg	neg	1
\boldsymbol{x}_{7}	neg	pos	2

1. To estimate the probability $p(y=k)$, for $k=1,2, \cdots, K$, we will use the formula:

$$
\theta_{k}=\frac{N_{k}+1}{n+K}
$$

where N_{k} is the count ("Number") of data points where $y=k$. Compute θ_{1} and θ_{2}. What would θ_{1} and θ_{2} be if we in fact had no training data?
2. To estimate the probabilities $p\left(x_{j}=v \mid y=k\right)$ for all features j, values v, and class label k, we will use the formula:

$$
\theta_{k, j, v}=\frac{N_{k, j, v}+1}{N_{k}+\left|f_{j}\right|}
$$

where $N_{k, j, v}$ is the count of data points where $y=k$ and $x_{j}=v$, and $\left|f_{j}\right|$ is the number of possible values that f_{j} (feature j) can take on. Fill in the following tables with these θ values.

$y=1$	pos	neg
f_{1}		
f_{2}		

$y=2$	pos	neg
f_{1}		
f_{2}		

