CS 260: Foundations of Data Science

Prof. Sara Mathieson Fall 2023

Admin

Lab 4 due Tuesday Oct 3

• Lab 2 grades posted on Moodle

 If there was an issue with your figures being blank please send me an email!

Outline for September 28

• Finish Handout 7

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Begin: Bayesian probability
– Clinical trials example

Outline for September 28

• Finish Handout 7

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Begin: Bayesian probability
– Clinical trials example

Outline for September 28

• Finish Handout 7

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Begin: Bayesian probability
– Clinical trials example

Goals of Evaluation

 Think about what metrics are important for the problem at hand

 Compare different methods or models on the same problem

Common set of tools that other researchers/users can understand

Training and Testing (high-level idea)

- Separate data into "train" and "test"
 - -n = num training examples
 - -m = num testing examples
- Fit (create) the model using training data
 e.g. sea_ice_1979-2012.csv
- Evaluate the model using testing data
 e.g. sea_ice_2013-2020.csv

Note: all the same model, different thresholds!

+

negatives

DO

69%

30

C

a((:

50

 $\bigvee \bigwedge$

(=

m

20

positives

Thresh

 \bigcirc

		Predicted class		ed class	
		Negative		Positive	
True	Negative	True neរ្ (TN	gative)	ا False (ا	positive FP)
class	Positive	False ne (FN	gative)	True p (1	oositive FP)

False Positive Rate:

```
FP/(TN+FP) = FP/N
```

 <u>Precision</u>: of all the "flagged" examples, which ones are actually relevant (i.e. positive)?
(Purity)

 <u>Recall</u>: of all the relevant results, which ones did I actually return?

(Completeness)

P=6 (number of images that are actually me)

- Precision?
- Recall?

- Precision = TP/(FP+TP) = 3/5
- Recall?

P=6 (number of images that are actually me)

- Precision = TP/(FP+TP) = 3/5
- Recall = TP/(FN+TP) = 3/6

P=6 (number of images that are actually me)

P=6 (number of images that are actually me)

- Precision = • 5/16
- Recall = • 5/6

Top 25 Sara Mathieson profil... linkedin.com

saramathieson (Sara Mathies... github.com

Sara Mathieson cs.swarthmore.edu

Sara Mathieson (saramathi...

pinterest.com

Sara Mathieson Email & amp: ... contactout.com

Modified from Ameet Soni

Precision/Recall for google example

ROC curve (Receiver Operating Characteristic)

ROC curve example: comparing methods

Example of a ROC curve from my research Chan, Perrone, Spence, Jenkins, Mathieson, Song How to get a ROC curve for probabilistic methods?

 Usually we use 0.5 as a threshold for binary classification

- Vary the threshold! (i.e. choose 0, 0.1, 0.2,...)
 - $-P(y=1 | x) \ge 0.2 \qquad => classify as 1 (positive)$ $-P(y=1 | x) < 0.2 \qquad => classify as 0 (negative)$

Handout 8

