CS 260: Foundations of Data Science

Prof. Sara Mathieson

Fall 2023

neman
HAVERFORD
COLLEGE

Admin

- Lab 1 grades returned hopefully Wednesday (on Moodle)
- Lab 2 was due last night unless you're taking a late day
- Lab 3 posted, start in lab today

Outline for September 19

- Recap simple (i.e. $p=1$) linear regression
- Introduction to applied linear algebra
- Multiple linear regression
- Analytic solution to multiple linear regression

Outline for September 19

- Recap simple (i.e. $\mathrm{p}=1$) linear regression

Introduction to applied linear algebra

Multiple linear regression

Handout 4 Let $n=2$ and $p=1$, with the following data (we will omit the first column of 1 's in simple linear regression):

$$
\boldsymbol{y}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \boldsymbol{X}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

(a) Plot these two points - what should \hat{w}_{0} and \hat{w}_{1} be?

$$
\begin{aligned}
& \hat{\omega}_{0}=1 \\
& \hat{\omega}_{1}=-1
\end{aligned}
$$

(b) This week we derived the solution for simple linear regression:

$$
\bar{X}=\frac{1}{2} \quad \hat{w}_{1}=\frac{\operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y})}{\operatorname{Var}(\boldsymbol{x})}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad \hat{w}_{0}=\bar{y}-\hat{w}_{1} \bar{x}
$$

where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$. Use these equations to compute \hat{w}_{0} and \hat{w}_{1} and verify your answer to (a).

$$
\begin{aligned}
& \hat{\omega}_{1}=\frac{\frac{1}{2}\left[\left(1-\frac{1}{2}\right)\left(0-\frac{1}{2}\right)+\left(0-\frac{1}{2}\right)\left(1-\frac{1}{2}\right)\right]}{\frac{1}{2}\left[\left(1-\frac{1}{2}\right)^{2}+\left(0-\frac{1}{2}\right)^{2}\right]} \quad \square \quad \hat{\omega}_{0}=\frac{1}{2}-(-1) \frac{1}{2} \\
& =\frac{-\frac{1}{4}-\frac{1}{4}}{\frac{1}{4}+\frac{1}{4}} \Rightarrow \hat{\omega}_{1}=-1
\end{aligned}
$$

Outline for September 19

- Recap simple (i.e. $\mathrm{p}=1$) linear regression
- Introduction to applied linear algebra
- Multiple linear regression
- Analytic solution to multiple linear regression

Vectors

- Vector magnitude

$$
\mathbf{v}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad \text { then } \quad|\mathbf{v}|=\sqrt{x^{2}+y^{2}}
$$

- Different ways to write a vector

$$
\mathbf{v}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]^{\mathrm{T}}
$$

- Vector dot product

Vector dot product

Vector Addition

$$
\mathbf{v}_{1}+\mathbf{v}_{2}=\left[\begin{array}{l}
8 \\
3
\end{array}\right]+\left[\begin{array}{l}
1 \\
5
\end{array}\right]=\left[\begin{array}{l}
8+1 \\
3+5
\end{array}\right]=\left[\begin{array}{l}
9 \\
8
\end{array}\right]
$$

Vector Addition

$$
\mathbf{v}_{1}+\mathbf{v}_{2}=\left[\begin{array}{l}
8 \\
3
\end{array}\right]+\left[\begin{array}{l}
1 \\
5
\end{array}\right]=\left[\begin{array}{l}
8+1 \\
3+5
\end{array}\right]=\left[\begin{array}{l}
9 \\
8
\end{array}\right]
$$

Vector Addition

$$
\mathbf{v}_{1}+\mathbf{v}_{2}=\left[\begin{array}{l}
8 \\
3
\end{array}\right]+\left[\begin{array}{l}
1 \\
5
\end{array}\right]=\left[\begin{array}{l}
8+1 \\
3+5
\end{array}\right]=\left[\begin{array}{l}
9 \\
8
\end{array}\right]
$$

Matrices

- Matrix addition (must be exactly the same dimension!)
$\mathbf{A}+\mathbf{B}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a+e & b+f \\ c+g & d+h\end{array}\right]$

Matrix Multiplication

- inner dimensions must match
- If A.shape $=(m, n)$ and B.shape $=(n, p)$, then AB.shape $=(m, p)$

```
\begin{array} { r } { [ \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} ] [ \begin{array} { l l } { e } & { f } \\ { g } & { h } \end{array} ] = [ \frac { a e + b g } { \ } \ } \end{array}
```


Matrix Multiplication

- inner dimensions must match
- If A.shape $=(m, n)$ and B.shape $=(n, p)$, then AB.shape $=(m, p)$

$] \quad\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a e+b g & a f+b h\end{array}\right]$

Matrix Multiplication

- inner dimensions must match
- If A.shape $=(m, n)$ and B.shape $=(n, p)$, then AB.shape $=(m, p)$

$$
\begin{array}{cc}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h
\end{array}\right]} \\
c e+d g
\end{array}\right]} & {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]} \\
\mathbf{A B}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{cc}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
\end{array}
$$

Matrix Transpose

$$
\boldsymbol{A}=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right] \quad \boldsymbol{A}^{T}=\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right]
$$

Useful note: $\quad(\boldsymbol{A B})^{T}=\boldsymbol{B}^{T} \boldsymbol{A}^{T}$

Matrix Inverse

$$
\boldsymbol{A}=\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right] \quad \boldsymbol{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Useful note: $\quad \boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{I}$

$$
\begin{aligned}
A A^{\prime} & =\left[\begin{array}{l}
a d-b c \\
c d
\end{array}\right) \\
\frac{1}{\frac{1}{a d} c}= & {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right.}
\end{aligned}
$$

$$
\begin{aligned}
& L=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
-c b+d a \\
-c b a
\end{array}\right] \\
& {\left[\begin{array}{l}
\frac{2 x}{4}=\frac{3}{2} \\
x=\frac{3}{3}
\end{array}\right.}
\end{aligned}
$$

Outline for September 19

- Recap simple (i.e. $\mathrm{p}=1$) linear regression
- Introduction to applied linear algebra
- Multiple linear regression

Lab 3: USA Housing data

Multiple) Linear Regression

$$
\begin{aligned}
& \hat{y}=h_{\vec{w}}(\vec{x})=w_{0} \\
& x= \\
& x_{0}=1 \\
& +w_{2} x_{2}+w_{p} x_{p}=\vec{\omega} \cdot \vec{x} \\
& \text { Cool is the same } \\
& \begin{array}{l}
J(\vec{w})=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
A \quad=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\vec{\omega} \cdot \vec{x}_{i}\right)^{2} \\
\text { Minimize cost function }
\end{array} \\
& \begin{array}{l}
J(\vec{w})=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{-2} \\
A \quad=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\vec{\omega} \cdot \vec{x}_{i}\right)^{2} \\
\text { Minimize cost function }
\end{array} \\
& n \overline{x(p+1)}
\end{aligned}
$$

Computing predictions given \boldsymbol{X} and \boldsymbol{w}

Outline for September 19

- Recap simple (i.e. $p=1$) linear regression
- Introduction to applied linear algebra
- Multiple linear regression
- Analytic solution to multiple linear regression
$J(\vec{s})=\frac{1}{2}(\bar{y}-x \vec{w}) \cdot(\bar{y}-x \vec{a})$

$$
\left.(J(\vec{\omega}))=\frac{1}{2}(\vec{y} \cdot \vec{y})-2 \vec{y} \cdot\left(X_{\vec{\omega}}\right)+\left(X_{\vec{w}}\right) \cdot\left(X_{\vec{w}}\right)\right)
$$

$\frac{\partial J}{\partial \bar{\omega}}=-x^{\top} \vec{y}+\left(X^{\top} x\right) \vec{\omega}=\vec{o}=x^{T} \sum_{0}^{0}$
Solve for $\vec{\omega} \quad\left(x^{\top} X\right) \vec{\omega}=x^{\top} \vec{y}$

Handout 5, \#1

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & -1 \\
3 & 2
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{rr}
0 & 2 \\
-4 & 1
\end{array}\right] .
$$

$$
\mathbf{A B}=\left[\begin{array}{rr}
4 & 1 \\
-8 & 8
\end{array}\right] \quad \text { and } \quad \mathbf{B A}=\left[\begin{array}{rr}
6 & 4 \\
-1 & 6
\end{array}\right] .
$$

$$
\begin{aligned}
& \text { (1) } A B=\left[\begin{array}{cc}
4 & 1 \\
-8 & 8
\end{array}\right] \quad B A=\left[\begin{array}{cc}
6 & 4 \\
-1 & 6
\end{array}\right] \\
& \text { (2) } X=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]-=\left[\begin{array}{l}
0
\end{array}\right] \quad[(x, y) \\
& \text { (3) } \vec{w}=\left(x^{\top} x\right)^{-1} x^{\top} \vec{y} \\
& \left(\left[\begin{array}{ll}
1 & 4 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\right)^{-1}\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Handout 5

Handout 5

Begin gradient descent

Gradient Descent

$$
f(w)=(w-3)^{2}+2=w^{2}-6 w+9+2
$$

$f(\omega) \underbrace{\substack{202}}_{0=0.8}$
 travel in opposite direction of the derivative
(1)
$\omega \leftarrow$

$$
w \leftarrow 0.6
$$

(2) $\omega \leftarrow 0.6$
$w \leftarrow 1.08$

$$
w=0
$$

storting

$$
\frac{\alpha=0.1}{s^{2} e^{2}=i^{0}}
$$

$$
\begin{gathered}
\omega=\omega-\alpha f^{\prime}(\omega), \\
\text { gradient descent }
\end{gathered}
$$

(1)

$$
\begin{aligned}
& \omega \leftarrow 0=0.1(2.0-6) \\
& \omega \leftarrow 0.6
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \omega \leftarrow 0.6-0.1(2(0.6)-6) \\
& w \leftarrow 1.08
\end{aligned}
$$

