Linear Regression: Analytic Solution

In the case of multiple linear regression, each example has p features. We still have we an associated response (output) variable y for each example. We typically add a "fake 1 " to the features of each example, so that $\boldsymbol{x}=\left[\begin{array}{lll}1 & x_{1} & x_{2} \cdots x_{p}\end{array}\right]^{T}$. Our model is now the dot product between the weight vector \boldsymbol{w} and the features:

$$
h_{\boldsymbol{w}}(\boldsymbol{x})=w_{0}+w_{1} x_{1}+\cdots w_{p} x_{p}=\boldsymbol{w} \cdot \boldsymbol{x}
$$

If we consider \boldsymbol{X} to be the entire matrix of features (with dimensions $n \times(p+1)$) then we can reframe the linear regression problem in terms of vectors and matrices. In this case the analytic solution for the weight vector is:

$$
\hat{\boldsymbol{w}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}
$$

1. Warmup. Given matrices \boldsymbol{A} and \boldsymbol{B} below, compute both $\boldsymbol{A B}$ and $\boldsymbol{B} \boldsymbol{A}$. Is matrix multiplication commutative?

$$
\boldsymbol{A}=\left[\begin{array}{rr}
1 & -1 \\
3 & 2
\end{array}\right] \quad \text { and } \quad \boldsymbol{B}=\left[\begin{array}{rr}
0 & 2 \\
-4 & 1
\end{array}\right]
$$

2. Going back to our small example from the last handout, we will use this matrix/vector form to verify our solution for \boldsymbol{w} (even though $p=1$ we can still use the multiple linear regression derivation). We again have the data: $\left(x_{1}, y_{1}\right)=(1,0)$ and $\left(x_{2}, y_{2}\right)=(0,1)$. First, rewrite \boldsymbol{X} with the added column of 1 's. Then write \vec{y} as a vector.
3. Now use the matrix/vector analytic solution to verify the weight vector \boldsymbol{w}.
