CS 260: Foundations of Data Science

Prof. Sara Mathieson Fall 2023

Admin

Sit somewhere new!

- Lab 1 was due last night
- Lab 2 posted (start today in lab, due Monday)

TA Hour Schedule

Sundays	4-6pm	Grace
Mondays	7-9pm	Trinity
Wednesdays	6:30-8:30pm	Henry
Thursdays	7:30-9:30pm	Ella

Data representation and featurization

Introduction to modeling

Why are models useful?

Data representation and featurization

Introduction to modeling

Why are models useful?

Tennis Data

Day	Outlook	Temperature	Humidity	Wind	PlayTennis (y)
$oldsymbol{x}_1$	Sunny	Hot	High	Weak	No
$ oldsymbol{x}_2 $	Sunny	Hot	High	Strong	No
$ x_3 $	Overcast	Hot	High	Weak	Yes
$oldsymbol{x}_4$	Rain	Mild	High	Weak	Yes
$oldsymbol{x}_5$	Rain	Cool	Normal	Weak	Yes
$ m{x}_6 $	Rain	Cool	Normal	Strong	No
$ oldsymbol{x}_7 $	Overcast	Cool	Normal	Strong	Yes
$ oldsymbol{x}_8 $	Sunny	Mild	High	Weak	No
$ m{x}_9 $	Sunny	Cool	Normal	Weak	Yes
$oldsymbol{x}_{10}$	Rain	Mild	Normal	Weak	Yes

Data from Machine Learning by Tom Mitchell (Table 3.2)

- Input or features: outlook, temp, humidity, wind
- Output or "label": play tennis (yes or no)

Sea Ice data (Lab 2)

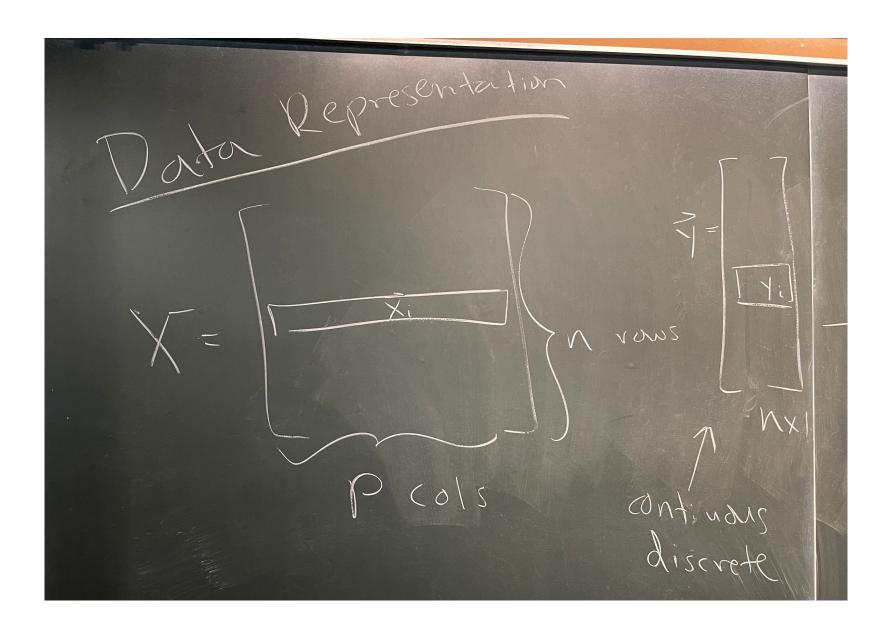
Year Sea Ice Extent*

1996 7.88 1997 6.74 1998 6.56 6.24 1999 6.32 2000 2001 6.75 2002 5.96 2003 6.15 6.05 2004 2005 5.57 2006 5.92 2007 4.3 2008 4.63

- Input or **feature**: year
- Output or "label": sea ice

^{*}Arctic sea ice extend (1,000,000 sq km)

Data Representation Notation



Feature Terminology

- Features: feature names
 - i.e. shape
 - i.e. sea ice extent

- Feature values: what values are possible
 - i.e. {circle, square, triangle}
 - i.e. all non-negative values

- Feature vector: values for a particular example
 - i.e. $\mathbf{x} = [x_1, x_2, x_3, ..., x_p]$

Featurization: make numerical

Featurization (make numerical) humidity \(\) \{ \) \(\) \	What is a model? (informal) Way of explaining observed through distribution (Formally) a distribution (that captures data) What is a model?

Featurization: make numerical

• Real-valued features get copied directly.

Duame, Chap 3

- Binary features become 0 (for false) or 1 (for true).
- Categorical features with V possible values get mapped to V-many binary indicator features.

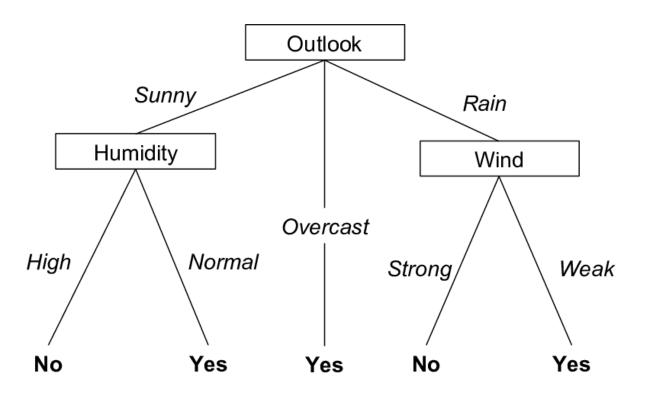
Q: what about features that might already be on a spectrum (i.e. sunny, rain, overcast)?

Data representation and featurization

Introduction to modeling

Why are models useful?

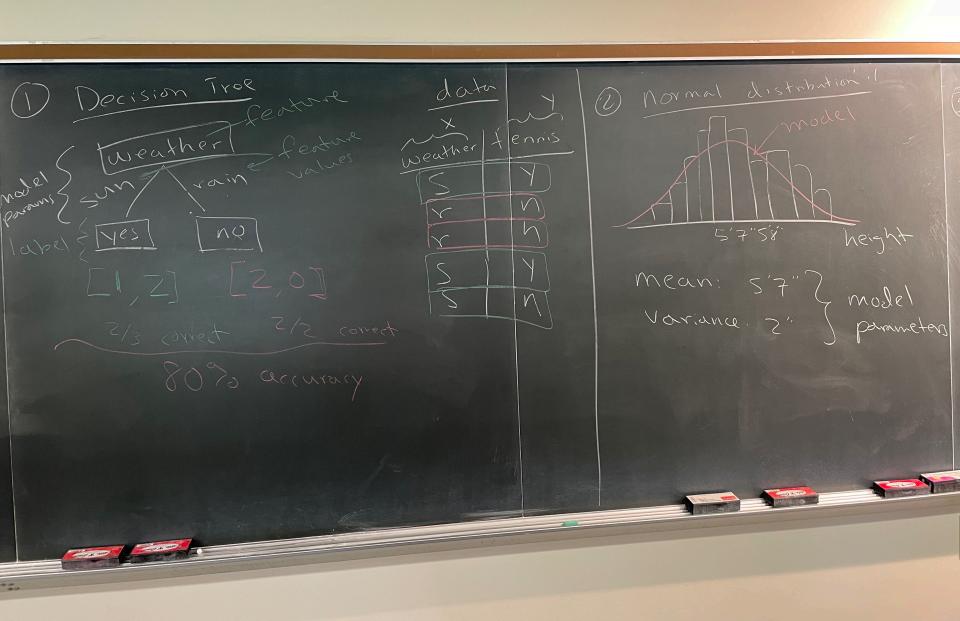
Example of a model



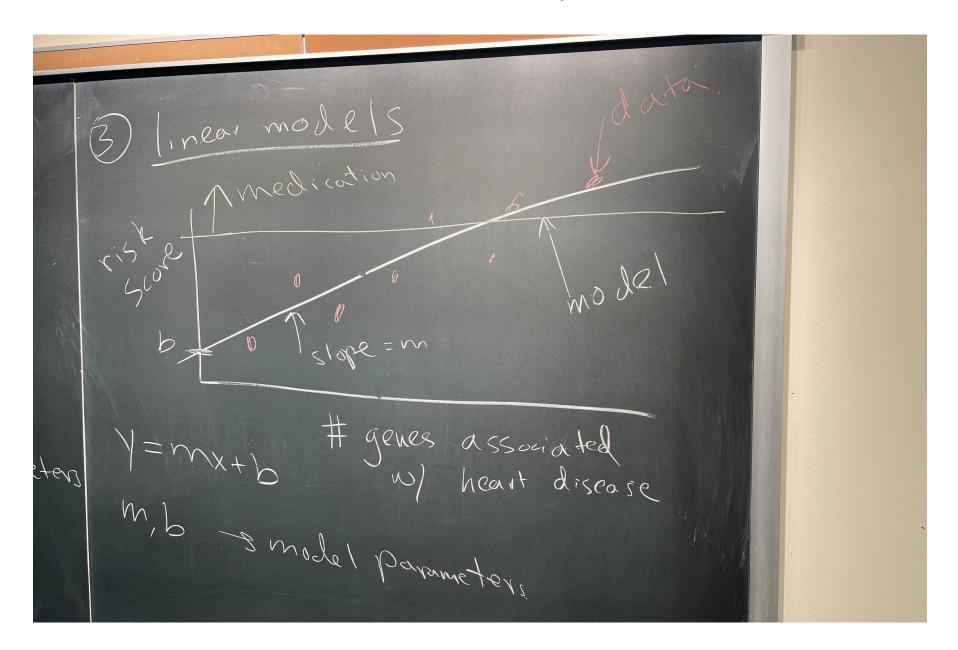
- Each internal node: one feature
- Each branch from node: selects one value of the feature
- Each leaf node: predict y

005

Model Examples



Model Examples



Q1: *n*=10, *p*=4

Day	Outlook	Temperature	Humidity	Wind	PlayTennis (y)
$oldsymbol{x}_1$	Sunny	Hot	High	Weak	No
$oldsymbol{x}_2$	Sunny	Hot	High	Strong	No
$ x_3 $	Overcast	Hot	High	Weak	Yes
$oldsymbol{x}_4$	Rain	Mild	High	Weak	Yes
$oldsymbol{x}_5$	Rain	Cool	Normal	Weak	Yes
$oldsymbol{x}_6$	Rain	Cool	Normal	Strong	No
x_7	Overcast	Cool	Normal	Strong	Yes
$oldsymbol{x}_8$	Sunny	Mild	High	Weak	No
$oldsymbol{x}_9$	Sunny	Cool	Normal	Weak	Yes
$oldsymbol{x}_{10}$	Rain	Mild	Normal	Weak	Yes

Q2

Sunny: $\{0,1\}$ Overcast: $\{0,1\}$ Rain: $\{0,1\}$ Temperature: $\{0,1,2\}$ (Cool, Mild, Hot) Humidity: $\{0,1\}$ (Normal, High) Wind $\{0,1\}$ (Weak, Strong)

Data from Machine Learning by Tom Mitchell (Table 3.2)

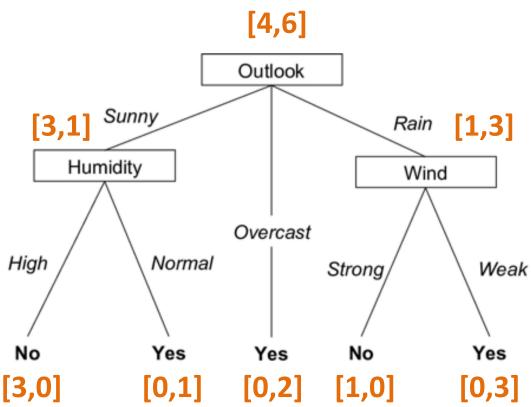
	`	\mathbf{a}
(1	≺
ľ	4	J

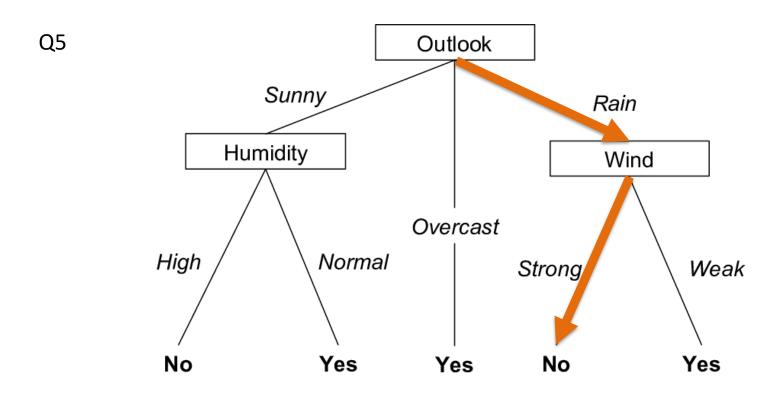
 \boldsymbol{x}_1

Sunny	Overcast	Rain	Temp	Humidity	Wind
1	0	0	2	1	0

Q4

In the model below, the children of each node divide the data into partitions. Label each node (both internal nodes and leaves) with the counts of "No" and "Yes" labels based on the partition. For example, the counts for the node labeled *Outlook* would be [4,6]. Does this model perfectly classify all examples?





	Outlook	Temp	Humidity	Wind
(test example) <i>x</i> =	Rain	Hot	High	Strong

 $y_{pred} = No$

Data representation and featurization

Introduction to modeling

Why are models useful?

Why are models useful?

 Understand/explain/interpret the phenomenon

Predict outcomes for future examples

What are the most important features?

X

Sh

sq

sq

square

circle

Color

red

blue

red

blue

red

nape	Size
uare	big
uare	big
rcle	small
uare	small

big

Likes toy?
+
+
-
_
+

What are the most important features?

X

Y

Color	Shape	Size
red	square	big
blue	square	big
red	circle	big
blue	square	big
red	circle	big

Likes toy?
+
+
-
-
+

Data representation and featurization

Introduction to modeling

Why are models useful?

