CS 260: Foundations of Data Science

Prof. Sara Mathieson
Fall 2023

I—IAVE RFORD

COLLEGE

Admin

Roster should hopefully be finalized tomorrow

— If you are #4 or higher on the waitlist, please find
another class (CS 260 will be offered again next year!)

Lab 1 due Monday night
Extra office hours: 2:30—3:30pm on Friday (H204)
Regular office hours: 2:30—4pm on Monday (H110)

If using computers in class, please direct to class
content! (very distracting for the people behind you if not)

Note-cards from Tuesday

 Slides before class: several people mentioned
this — | will try!

* TA hours and office hours: many people
mentioned these — we will set up the TA schedule
tomorrow

* Collaborative work in class: several people
mentioned this

— Will try to have every class

— Welcome to move your group into the hall

Introductions

(if you could be a data scientist for any type of data, what
would it be?)

Outline for Sept 7

Object-oriented programming (OOP) in Python
Reading in data in Python
Numerical Python (numpy)

If time: begin data representation

Outline for Sept 7

e Object-oriented programming (OOP) in Python

Classes in Python represent the same idea
as classes in Java

* Classes allow us to encapsulate common data
structures and actions so we don’t have to define them

over and over again
« Example: say we have two classes: Point and Circle

Classes in Python represent the same idea
as classes in Java

* Classes allow us to encapsulate common data
structures and actions so we don’t have to define them
over and over again

« Example: say we have two classes: Point and Circle
« We can create a new instance of a class using the

constructor
dot = Circle(Point(x,y), r)

Classes in Python represent the same idea
as classes in Java

Classes allow us to encapsulate common data
structures and actions so we don’t have to define them

over and over again
Example: say we have two classes: Point and Circle
We can create a new instance of a class using the

constructor
dot = Circle(Point(x,y), r)

We can access the instance’s data using methods
r = dot.get_radius()

Classes in Python represent the same idea
as classes in Java

Classes allow us to encapsulate common data
structures and actions so we don’t have to define them

over and over again
Example: say we have two classes: Point and Circle
We can create a new instance of a class using the

constructor
dot = Circle(Point(x,y), r)

We can access the instance’s data using methods
r = dot.get_radius()
We can use/modify class instances using methods

dot.move(dx,dy) ‘_‘

Motivation for classes: LOLs

 List-of-lists let us keep track of things that
should be “together”, but they get

cumbersome to modify:

Type of pie

AN

Number of slices

\

>>> pile_1lst = [["apple",8], ["cherry",8], ["chocolate",8]]

>>>

>>> pie_1st[2][1] —= 1

>>>

>>> ple_1lst

[['apple', 8], ['cherry', 8], ['chocolate’,

711

Motivation for classes: encapsulation and abstraction

« Encapsulated (student is represented as one
thing, a list), but not abstract

kendre = ["Kendre", 2020, ["cs35","actl","relg43","spanl"]]
name = kendre[0]

year = kendre[1]

Motivation for classes: encapsulation and abstraction

« Encapsulated (student is represented as one
thing, a list), but not abstract

kendre = ["Kendre", 2020, ["cs35","actl","relg43","spanl"]]

name = kendre[0]
year = kendre[1]

* Neither encapsulated (data for one student is
spread over multiple objects), nor abstract

name_lst = ["Kendre", "Rohan", "Ayaka", "Maleyah"]
year_lst = [2020, 2021, 2020, 2021]

name = name_lst[0]
year = year_1st[0]

Motivation for classes: encapsulation and abstraction

« Encapsulated (student is represented as one
thing, a list), but not abstract

kendre = ["Kendre", 2020, ["cs35","actl","relg43","spanl"]]

name = kendre[0]
year = kendre[1]

* Neither encapsulated (data for one student is
spread over multiple objects), nor abstract

name_lst = ["Kendre", "Rohan", "Ayaka", "Maleyah"]
year_lst = [2020, 2021, 2020, 2021]

name = name_lst[0]

year = year_1st[0]

« Both abstract and encapsulated

Should be: RGUEIEEES Student("Kendre", 2020)
ROV Name = kendre.getName()
EIVCEV Year = kendre.getYear()

Advantages of encapsulation/abstraction

* Interface (how you interact with something) is
consistent even if the internal details change.

1) If you change the engine in your car, you still drive it

the same way — don’t need to know how the engine
works.

2) In online shopping you have a “Cart”, which is an
abstract concept and is roughly the same across sites.
Probably represented as a list underneath but user
doesn’t need to know.

“Pie” class example

class Pie: # class names should be capitalized

must use init for the constructor
def __init_ (self, flavor):

def

def

"""Constructor for the Pie class.™""

in the constructor, define the data (i.e. self.data)
data are called: attributes or instance variables
self.flavor = flavor

self.slices = 8

get_slices(self):
"""Return the number of slices left (int)."""
return self.slices

get_flavor(self):
"""Return the flavor of the pie (str)."""
return self.flavor

“Pie” class example

def serve(self):
"""Tf there is at least one slice left, reduce the number of slices."""
if self.slices > 0:
print("Here is a slice of %s pie!" % self.flavor)
self.slices —= 1
else:
print("Sorry, there is no more %s pie!" % self.flavor)

def _ str__ (self):
"""Return a string representation of a pie."""
s = "%s pie has %i slices left!" % (self.flavor, self.slices)
return s

“Pie” class example

def main(

)
piel = Pie("apple")
print(piel)

for i in range(12):

piel.serve()

print(piel.get_slices())
print(piel.get_flavor())
print(piel)

pie2 = Pie("pumpkin")
print(pie2)
pie2.serve()
print(pie2)

apple pie has 8 slices left!
Here is a slice of apple pie!
Here is a slice of apple pie!
Here is a slice of apple pie!
Here is a slice of apple pie!
Here 1is a slice of apple pie!
Here is a slice of apple pie!
Here is a slice of apple pie!
Here is a slice of apple pie!
Sorry, there is no more apple pie!

Sorry, there is
Sorry, there 1is
Sorry, there 1is

0
apple
apple pie

has 0

pumpkin pie has

Here is a

slice

no
no
no

more apple pie!
more apple pie!
more apple pie!

slices left!
8 slices left!

of

pumpkin pie!

pumpkin pie has 7 slices left!

Best Practices workflow demo

* Running code on the command line

 Classes demo

TwitterUser class similar to demo

class TwitterUser: # only time camel case 1s okay!

constructor

def __init__ (self, name, curr_following, curr_followers):
self.name = name
self.following = curr_following
self.followers = curr_followers

def add_follower(self): # always have to use self!
self.followers += 1
TODO we could make this better by creating a list of followers who
are themselves instances of TwitterUser

def follow(self):
self.following += 1

def __str__ (self):
must return a string, not print a string!
return "name: %s\nnum following: %i\nnum followers: %i" % (self.name, \
self.following, self.followers)

Handout 2

* Find and work with a partner

Handout 2

Recap Die class

» Defining the Constructor: builds an instance of
the class (self), and initializes all instance
variables (self.xxx)

class Die:

def (self, num_sides):

"""Construct a new die with the given number of sides."""
.sides = num_sides
[f.value = 1

Recap Die class

» Defining the Constructor: builds an instance of
the class (self), and initializes all instance
variables (self.xxx)

class Die:

def (self, num_sides):

"""Construct a new die with the given number of sides."""
.sides = num_sides
[f.value = 1

» Using the Constructor: assign the new object to a
variable, making the “self” placeholder a
concrete instance

def main():

diel = Die(8)

die2 = Die(8)

Recap Die class

« Defining Methods: always use “self” as the first
argument (placeholder for the instance). Getters are
a type of method that return instance variables or

their derivatives. SISy

"""Getter for the die's current value."""
return self.value

def roll(self):
"""Choose a new random value for the die, i.e. roll it."""“

self.value = random.randrange(1,self.sides+1)

Recap Die class

« Defining Methods: always use “self” as the first

argument (placeholder for the instance). Getters are
a type of method that return instance variables or

their derivatives. SISy

"""Getter for the die's current value."""
return [f.value

def roll(self):
"""Choose a new random value for the die, i.e. roll it."""“
21f.value = random.randrange(1,self.sides+1)

« Using Methods: instance.method(...), don't use self

same = False

while not same:
diel.roll()
die2.roll()
print(diel)
print(die2)
print()

same = (diel.getValue() == die2.getValue())

Recap Die class

* Defining the str method: no print(..) statements!
Build and return a single string. (no arguments
besides self)

def (self):
"""String representation of the die (with current value)."""

return "%d-sided die, current value: %d" % (self.sides, self.value)

Recap Die class

* Defining the str method: no print(..) statements!
Build and return a single string. (no arguments
besides self)

def (self):
"""String representation of the die (with current value)."""

return "%d-sided die, current value: %d" % (self.sides, self.value)

« Usingthe str method: simply call print(instance)!

print(diel)

print(die2)

Outline for Sept 7

* Reading in data in Python

c_file = open("colleges.txt", 'r')

enroll_1st = []

for line in c_file:

tokens = line.split()

name = tokens[0]
enroll = int(tokens[1])
enroll_lst.append(enroll)

c_file.close()

colleges.txt

Amherst 1792
‘Bates 1792
'Bowdoin 1806
BrynMawr 1709
'Colby 1815
Davidson 1950
Haverford 1290
‘Middlebury 2526
Pomona 1663

Example of reading in data

'Reed 1411

Smith 2600
Swarthmore 1620
Vassar 2450
Wellesley 2474
‘Williams 2099

File reading demo

import csv
import numpy as np

1) read line by line
fb_file = open('data/facebook_users.csv", 'r') # 'r' for read mode
for line in fb_file:
tokens = line.split(",") # split on comma
year = int(tokens[0])
num_users = int(tokens[1])
print(year, num_users)
fb_file.close()

2) csv reader
with open("data/facebook_users.csv", 'r') as fb_file:
csv_reader = csv.reader(fb_file)
for line in csv_reader:
print(line)

3) load into numpy array
data = np.loadtxt("data/facebook_users.csv", dtype=int, delimiter=",")
print(data)

Outline for Sept 7

 Numerical Python (numpy)

Numpy

Numerical Python
Designed for fast computation on arrays
Implemented in C underneath

pip3 install numpy (on the terminal) OR
python3 —m pip install numpy

Numpy concatenation

-

np.concatenate((A,B), axis=0) np.concatenate((A,B), axis=1)
axis=1
?J, A B must match
5 along axis O
(g0)

must match along axis 1

Numpy concatenation

np.concatenate((A,C), axis=0) np.concatenate((A,C), axis=1)

axis=1
Error: must
match along
axis 0!

=0

axis

must match along axis 1

Outline for Sept 7

* |f time: begin data representation

<X()\W\‘7\e)

—)

e \/\\/\P é g
= e /) N
OWS x (0\;‘

=)
>
ST
2
2
=

P Do o
\

U\ < a\\\\/ . ol \/

R
|

