
CS 260: Foundations of Data Science

Prof. Sara Mathieson
Fall 2023



Welcome!

• If you are enrolled or on the waitlist, please sign 
in (sheet going around)
– If not, you should not be here!

• Please fill out a notecard

• Let me know if you can’t access Piazza



Outline for Sept 5

• Preliminaries

• Examples of Data Science and learning from data

• Syllabus highlights

• Python for this course
– Numpy
– Matplotlib



Outline for Sept 5

• Preliminaries

• Examples of Data Science and learning from data

• Syllabus highlights

• Python for this course
– Numpy
– Matplotlib



Course Staff

• Instructor: Sara Mathieson (can call me Sara 
or Professor Mathieson)

• Teaching Assistants: Henry, Grace, Ella

• Class introductions: will do during class or lab 
on Thursday



Discuss with a Partner

• Introduce yourselves

• Come up with your own definition of “Data 
Science”

• What are some examples of Data Science that 
you have encountered or would like to 
encounter?



Outline for Sept 5

• Preliminaries

• Examples of Data Science and learning from data

• Syllabus highlights

• Python for this course
– Numpy
– Matplotlib



From: 
Data Computing
by Daniel Kaplan



Data Science Venn Diagrams

Not the only way of 

thinking about DS!



Focus for this course



KEY COMPETENCIES FOR AN 
UNDERGRADUATE DATA SCIENCE STUDENT

•  Computational and statistical thinking
•  Mathematical foundations
•  Model building and assessment
•  Algorithms and software foundation
•  Data curation
•  Knowledge transference—communication 

and responsibility

From: De Veaux et al, 2017



CS260 is not an entry level DS course
• “Math for Machine Learning”

• Meant to prepare students for 300-level data- 
oriented courses
– Machine Learning (CS360)
– Computational Linguistics (CS325)
– Computer Vision
– Computational Biology

• Most of these are in Python so we will also 
cover advanced Python topics and libraries



“Data Wrangling”

https://favtutor.com/blogs/data-wrangling



Featurization

Age Category
54
13
27
21
72
17

Continuous Discrete



Featurization

Age Category
54 Adult
13 Minor
27 Adult
21 Adult
72 Senior
17 Minor

Continuous Discrete



Learning from data: classification

• Email filtering (spam vs. not-spam)

Images: Wikipedia, Matouš Havlena



• Email filtering (spam vs. not-spam)

• Handwriting recognition (digits in a check)

Images: Wikipedia, Matouš Havlena

Learning from data: classification



• Tumor detection (benign vs. malignant)

Images: The New Yorker

“On Breast Cancer Detection: An Application of Machine 
Learning Algorithms on the Wisconsin Diagnostic Dataset”

Learning from data: classification



Statistical Tests

Wayne W. LaMorte, MD, PhD, MPH
Boston University School of Public Health



Data Visualization

“Expression reflects population structure”, Brown et al (2018)



Clustering Data

“Event detection in Colombian security Twitter news using fine-grained latent topic analysis”, 
Vargas-Calderon et al (2019) 



Learning from data: networks

“A Gentle Introduction to Graph theory”, by Xavier Sumba



Natural Language Examples

• Text Classification
• Language Modeling
• Speech Recognition
• Caption Generation
• Machine Translation
• Document Summarization
• Question Answering
• Text Generation

https://machinelearningmastery.com/applications-of-deep-learning-for-natural-language-processing/
https://openai.com/blog/better-language-models/

Machine reading comprehension

https://openai.com/blog/better-language-models/


Biology examples

• Identify genes 
associated with 
disease

• Protein structure 
prediction

• Genes under 
natural selection

• Protein binding site 
prediction

The complete genome sequence of a Neanderthal from the Altai Mountains, Prufer et al (2014)

• Population size changes



Self-driving cars are in our present and future

Images: Scientific American

AlphaGo: moves humans never thought of

Modern Machine Learning examples



• Algorithms that 
learn how to create

Image-to-Image Translation with 
Conditional Adversarial Nets (Nov 2016)

Modern Machine Learning examples

https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/


Generative Models

Generative models have also been used to create synthetic genomic data to maintain privacy



Ethics and Responsible use of Data
• Based on huge quantities of data, algorithms 

decide what you see online
– Search results
– Targeted ads
– Newsfeed content
– Removal of problematic content

• Even if data is “cleaned” to remove protected 
features (e.g. race, sex), these can be 
redundantly encoded



We must join the conversation

“When human beings acquired language, we 
learned not just how to listen but how to speak. 

When we gained literacy, we learned not just how 
to read but how to write. And as we move into an 
increasingly digital reality, we must learn not just 

how to use programs but how to make them.”

-Douglas Rushkoff



Outline for Sept 5

• Preliminaries

• Examples of Data Science and learning from data

• Syllabus highlights

• Python for this course
– Numpy
– Matplotlib



Weekly schedule

Week n Week n+1
Sun Sun
Mon Mon
Tues Tues
Wed Wed
Thurs Thurs
Fri Fri
Sat Sat

Lab n posted
Lab n due
Lab n+1 posted

Read and begin lab

Blue: class meetings



Lab (Tuesdays 1-2pm and 2-3pm)
• Lab attendance is required! Please email me if 

you will be missing lab

• Usually give a short introduction to everyone

• Occasionally pair-programming or warm-up 
exercises

• I will check in with everyone and answer 
questions individually or in groups



Learning Goals
• Understand how algorithms make decisions based on data
• Understand the theoretical foundations of DS
– applied linear algebra, probability, statistics, modeling 

information theory, and optimization
• Be able to implement the theory and apply it to a variety of 

domains
• Analyze the ethical use of data and weigh tradeoffs in data 

collection and usage
• Understand and apply best practices in data visualization
• Throughout and during the project: hypothesis 

development, featurization, algorithm selection, 
interpretation of results, iteration, conclusions

• Comfort with using advanced Python topics such as libraries 
and object-oriented design



Topics (tentative)

• Representing data
• Common Python libraries
• Object-oriented Python
• Modeling
• Linear models
• Applied linear algebra
• Optimization
• Gradient descent
• Confusion matrices
• ROC curves

• Probabilistic modeling
• Naïve Bayes algorithm
• Ethics and protected features
• Information theory
• Data visualization 
• Dimensionality reduction
• Clustering
• Permutation testing and 

bootstrapping
• Hypothesis testing



There will be math!



Different Backgrounds

• Prerequisites: Data Structures, Discrete Math (co-
req), Calculus I

• May or may not have statistics, probability, linear 
algebra, etc

• Class roster spans first-year through senior



Readings
• We will draw upon several online textbooks 
• As well as supplemental online readings and research 

papers



Course Components
• Labs (8 total): 35% 

• Midterms: 40% (20% each)

• Final project: 15%
– includes an oral presentation and “lab notebook” 

• Participation: 10% 
– includes attendance, Piazza, note-taking, and 

general engagement with the course



My Expectations
• Come to class (Tu/Thurs) and lab (Th), ON TIME, and actively participate

– Email me if you will be absent from class or lab

• Complete reading before lab on Tuesday (some is technical, do your best)

• Come to office hours and TA hours.  My office hours: Mondays 2:30-4pm in H110

• Post questions on Piazza 



Syllabus Notes

1. Notes and slides will be posted after class on the course webpage 

2. Lab is mandatory (attendance will be taken) 

3. Labs may have an optional pair programming component

4. You will get 4 late days during the semester (up to 2 on any one assignment)

5. Extensions beyond these two days must be arranged with your class dean

6. Email: allow at least 24 hours for a response (more during weekends) 

7. Piazza: should be used for all content/logistics questions 

(Note: you are responsible for reading the entire syllabus on the course webpage) 



Participation 

• Asking and answering questions in class (very important!) 
– Will call on groups, but only after giving you a few minutes to 

think/discuss

• Actively participating in in-class activities (group work, handouts, polls)

• Collaborating with your lab partner for any pair-programming exercises

• Asking and answering questions on Piazza 
– Avoid long blocks of code and giving away answers 
– Only non-anonymous public posts count toward participation grade 

• Attending office hours and TA hours 

What counts as participation? 



Academic Integrity

Faculty statement on academic integrity



Academic Integrity

Discussing ideas and approaches to problems with 
others on a general level is fine (in fact, we encourage 
you to discuss general strategies with each other), but 
you should never read anyone else's code or let 
anyone else read your code. 

Note for CS260 in particular

Github copilot (or any other software for 
automatically generating code) is not allowed 
for this course, until the final project. The reasoning 
behind this decision is that code generation tools often 
create code that is not well understood by the user. 
Often this code becomes incorrect in the larger 
context of the program. However, for the final project 
you are welcome to use Github copilot, and you'll be 
asked to reflect on your experience.



Academic Accommodations
Faculty statement on accommodations

https://www.haverford.edu/access-and-disability-
services/accommodations/receiving-accommodations

https://www.haverford.edu/access-and-disability-services/accommodations/receiving-accommodations
https://www.haverford.edu/access-and-disability-services/accommodations/receiving-accommodations


Outline for Sept 5

• Preliminaries

• Examples of Data Science and learning from data

• Syllabus highlights

• Python for this course
– Numpy
– Matplotlib



Python style
• Decompose code into natural functions
• Avoid global variables (sometimes useful)
• Include a file header with purpose, author, 

and date
• Include headers for each function
• No lines over 80 chars
• Variable names implicitly show type
• Include line breaks and comments!



• “Snake-case” not “camel-case”
– linearSearch
– linear_search

• Alphabetize imports and don’t use “*”
– from numpy import *
– import numpy as np

Python style



Python style examples



Structure of main and “helper” functions

Main (driver)

Helper 
Function1

Helper 
Function

2

Helper
Function

3

Sub-
helper 

A

Sub-
helper

B

Sub-
helper

C



Structure of main and “helper” functions



Reminder: steps of top-down-design (TDD)



1) Design a high-level main function that captures the basic idea of 
the program.

Reminder: steps of top-down-design (TDD)



1) Design a high-level main function that captures the basic idea of 
the program.

2) As you're writing/designing main, think about which details can 
be abstracted into small tasks. Make names for these functions 
and write their signatures below main.

Reminder: steps of top-down-design (TDD)



1) Design a high-level main function that captures the basic idea of 
the program.

2) As you're writing/designing main, think about which details can 
be abstracted into small tasks. Make names for these functions 
and write their signatures below main.

3)  “Stub” out the functions. This means that they should work and 
return the correct type so that your code runs, but they don’t do 
the correct task yet. For example, if a function should return a 
list, you can return []. Or if it returns a boolean, you can return 
False.

Reminder: steps of top-down-design (TDD)



1) Design a high-level main function that captures the basic idea of 
the program.

2) As you're writing/designing main, think about which details can 
be abstracted into small tasks. Make names for these functions 
and write their signatures below main.

3)  “Stub” out the functions. This means that they should work and 
return the correct type so that your code runs, but they don’t do 
the correct task yet. For example, if a function should return a 
list, you can return []. Or if it returns a boolean, you can return 
False.

4) Iterate on your design until you have a working main and stubbed 
out functions. Then start implementing the functions, starting 
from the “bottom up”.

Reminder: steps of top-down-design (TDD)



Reasons to use TDD
• Creates code that is easier to implement, debug, 

modify, and extend

• Avoids going off in the wrong direction (i.e. 
implementing functions that are not useful or 
don’t serve the program)

• Creates code that is easier for you or someone 
else to read and understand later on



DEMO + Handout 1

• Matplotlib
• Numpy



Handout 1 ideas



Handout 1
(example solution)



TODO

• Read over Lab 1, accept assignment on github
– (can be done during lab)

• Come to lab TODAY!
– Lab A: 1-2pm (H110)
– Lab B: 2-3pm (H110)

• Reading: MML Chap 1


