CS 260: Foundations of Data Science

Prof. Sara Mathieson
Fall 2023

I—IAVE RFORD

COLLEGE

Welcome!

* |f you are enrolled or on the waitlist, please sign
in (sheet going around)

— If not, you should not be here!

e Please fill out a notecard

* Let me know if you can’t access Piazza

Outline for Sept 5

Preliminaries
Examples of Data Science and learning from data
Syllabus highlights

Python for this course

— Numpy
— Matplotlib

Outline for Sept 5

* Preliminaries

Course Staff

* |nstructor: Sara Mathieson (can call me Sara
or Professor Mathieson)

e Teaching Assistants: Henry, Grace, Ella

e Class introductions: will do during class or lab
on Thursday

Discuss with a Partner

* Introduce yourselves

 Come up with your own definition of “Data
Science”

 What are some examples of Data Science that
you have encountered or would like to
encounter?

Outline for Sept 5

 Examples of Data Science and learning from data

I Information is what we want, but data are what we’ve got. IThe tech-
niques for transforming data into information go back hundreds of
years. A good starting marker is 1592 with the publication of weekly

~ “bills of mortality” in London. These bills were tabulations: a con-
densing of the data into a form more readily assimilated by the hu-
man reader. Constructing such tabulations was a manual operation.

As data became larger, machines were introduced to speed up the
tabulations. A major step was Hollerith’s development of punched
cards and an electrical tabulating system for the US Census of 189o0.
This was so successful that Hollerith started a company, IBM, that
came to play an important role in the development of today’s elec-

tronic computers.

Also in the late 19th century, statlstlcal methods began to develop
rapldly These methods have been tremendously important in in-
ey were not mtrmsmally tied to mechanical

ts that are so large they can
of “big data,” often data

ite observations of Earth,
With such data, there
erizing patterns using
g, data visualiza-

ta involve computer
e hinino data from

From:
Data Computing
by Daniel Kaplan

Data Science Venn Diagrams

\
N (o)
A st -
Not 08 Lo DOMAIN
e EXPERTISE

RESEARCH
. DATA
SCIENCE

Source: Palmer, Shelly. Data Science for the C-Suite.
New York: Digital Living Press, 2015. Print.

Data Science Venn Diagram v2.0

Computer Math and
Science Statistics

N

Traditional
Software

KEY COMPETENCIES FOR AN
UNDERGRADUATE DATA SCIENCE STUDENT

 Computational and statistical thinking
 Mathematical foundations

* Model building and assessment

* Algorithms and software foundation

* Data curation

 Knowledge transference—communication
and responsibility

From: De Veaux et al, 2017

CS260 is not an entry level DS course

* “Math for Machine Learning”

* Meant to prepare students for 300-level data-
oriented courses
— Machine Learning (CS360)
— Computational Linguistics (CS325)
— Computer Vision
— Computational Biology

* Most of these are in Python so we will also
cover advanced Python topics and libraries

“Data Wrangling”

H "
O

DISCOVERING TASKS OF
\ Q) DATA WRANGLING
8:))

W

https://favtutor.com/blogs/data-wrangling

Featurization

Age

54
13
27
21
72
17

\ N\

Continuous Discrete

Featurization

Age

54 Adult
13 Minor
27 Adult
21 Adult
72 Senior
17 Minor

\ N\

Continuous Discrete

Learning from data: classification

* Email filtering (spam vs. not-spam)

From: cheapsales@buystufffromme.com
To: ang@cs.stanford.edu
Subject: Buy now!

Deal of the week! Buy now!
Rolex wé4tchs - $100
Medlcine (any kind) - $50
Also low cost MOrgages
available.

From: Alfred Ng
To: angf@cs.stanford.edu
Subject: Christmas dates?

Hey Andrew,

Was talking to Mom about plans
for Xmas. When do you get off
work. Meet Dec 222

Alf

Learning from data: classification

* Email filtering (spam vs. not-spam)

From: cheapsales@buystufffromme.com From: Alfred Ng

To: ang@cs.stanford.edu To: angfcs.stanford.edu

Subject: Buy now! Subject: Christmas dates?

Deal of the week! Buy now! Hey Andrew,

Rolex wé4tchs - $100 Was talking to Mom about plans 243
Medlcine (any kind) - $50 for Xmas. When do you get off MR. JOHN JONES SJOOC [201
e Ay 1645 DUNDAS ST. W, APT. 27 DATE

Also low cost MOrgages work. Meet Dec 222 TORONTO, ON M6K 1V2 .
available. Alf

PAY TO THE Wm Fonmat"ul I $ lw N 55

‘ORDER OF

One Hundred Dollars and —————— 55/ oouiums gz

St on back
FIRST BANK OF WIKI

! Victoria Main Branch
» 1425 James St., P.O. Box 4001
Victoria (B.C.) V8X 3X4
e Donahon B oL 4 it S

2L 00005mLg3n Lg3ml GRm7I

 Handwriting recognition (digits in a check)

Learning from data: classification

\

 Tumor detection (benign vs. malignant)

“On Breast Cancer Detection: An Application of Machine
Learning Algorithms on the Wisconsin Diagnostic Dataset”

Statistical Tests

Do smokers weigh the same as non-smokers?

Null Hypothesis (H,): the average weight does not differ

HO: Mean Wgt- smokers = Mean Wgt- Non-smokers

Alternative Hypothesis (H,): the average weights differ I

Ha: Mean Wgt. oy =~ Mean Wgt. yon.smokers

Wayne W. LaMorte, MD, PhD, MPH
Boston University School of Public Health

Data Visualization

Coordinate 2

A mean reconstruction error: 0.92358

0.10 A

- 0
0.05 ° [e]

%
0.00 - 0‘#\ o
" . - ‘,'o pop
d. e GBR
. e FIN
~0.05 - ¥, i vl
e TSI
o ©
-0.10 A
-0.15 -
]
©
-0.15 -0.10 -0.05 0.00 0.05

Coordinate 1

“Expression reflects population structure”, Brown et al (2018)

Clustering Data

Traffic events

Traffic accidents

Robberies and microtrafic

Common crime

Violence against women

Lost bullets and burns

Citizen action
against crime Sexual abuse

Displacements and disappearances

Medical negligence Victim stories

Health problems in children

Violence against children

“Event detection in Colombian security Twitter news using fine-grained latent topic analysis”,
Vargas-Calderon et al (2019)

Learning from data: networks

m .y
[} . =
¢ @
s == -y =
- a - ,»\‘rnl‘!'iufd
=]
L
'
- o
B O e oY F 8 LT
- g o . ™ - 0w) Mathematical
- » . ~ Ecology
re l .
e =
o=t - a— Ba- u‘
-y — “ 9 & "
...:.E‘. l..-g,‘- & 5 ° & Ll'.l (=]
'."“." r-:.‘,‘. .-' 5 () - o -
T T e ~ -8 [3 - 2] Stati
‘Ia_. n-.-.,‘v 1le \.:ltij‘] nD
Lregt " v A7\
i T p i E = Ve v
P e e O N o
el f
Ay e @ - 00 Gy
@B e - -
N - Strucwre
8" as s.n-0 s Ot

Social networks Economic networks

B | :
. o= -) ‘:: \ ’ vF
» ‘ j . ' \ s W = ? »
= O) H D 5 s - B
| — § {‘ J \ / 7 o

Information networks:

Web & citations Internet Networks of neurons

“A Gentle Introduction to Graph theory”, by Xavier Sumba

Natural Language Examples

Text Classification
Language Modeling
Speech Recognition
Caption Generation
Machine Translation
Document Summarization
Question Answering

Text Generation

Machine reading comprehension

Q: What was the theme?
A: “one world, one dream”’

Q: What was the length of the race?
A: 137000 km

Q: Was it larger than previous ones?
A: No

Q: Where did the race begin?
A: Olympia, Greece

Q: Is there anything notable about that place?

A: birthplace of Olympic Games

Q: Where did they go after?
A: Athens

Q: How many days was the race?
A: seven

Q: Did they visit any notable landmarks?
A: Panathinaiko Stadium

Q: And did they climb any mountains?
A:

Target answers: unknown or yes
Model answer: Everest

https://openai.com/blog/better-language-models/

Biology examples

ldentify genes
associated with
disease

Protein structure
prediction

Genes under
natural selection

Protein binding site
prediction

Population size (scaled in units of 4uN x 109)

* Population size changes

5-10 kyr 50-100 kyr 0.5-1 Myr 5-10 Myr
3F Neanderthal Sardinian
I Denisova French
[Karitiana Dinka
2.5[Papuan Mbuti
I Dai Mandenka
ok Han Yoruba
- San
15F
it
0.5F
: LL—J—U_
105 104 103 102

Time (scaled in units of 2uT)

Modern Machine Learning examples

AlphaGo: moves humans never thought of

0®0
Self-driving cars are in our present and future i@; AIphaGo

Images: Scientific American

Modern Machine Learning examples

Edges to Photo

e Algorithms that
learn how to create

b

B \ BW to Color

input output

Image-to-Image Translation with
Conditional Adversarial Nets (Nov 2016)

https://phillipi.github.io/pix2pix/
https://phillipi.github.io/pix2pix/

Generative Models
@ o -

4.5 years of GAN progress on face
generation. arxiv.org/abs/1406.2661
arxiv.org/abs/1511.06434
arxiv.org/abs/1606.07536
arxiv.org/abs/1710.10196
arxiv.org/abs/1812.04948

4:40 PM - 14 Jan 2019

Generative models have also been used to create synthetic genomic data to maintain privacy

Ethics and Responsible use of Data

* Based on huge quantities of data, algorithms
decide what you see online
— Search results
— Targeted ads
— Newsfeed content
— Removal of problematic content

* Even if data is “cleaned” to remove protected
features (e.g. race, sex), these can be
redundantly encoded

We must join the conversation

“When human beings acquired language, we
learned not just how to listen but how to speak.
When we gained literacy, we learned not just how
to read but how to write. And as we move into an

increasingly digital reality, we must learn not just
how to use programs but how to make them.”

-Douglas Rushkoff

Outline for Sept 5

* Syllabus highlights

Weekly schedule

Weekn | Weekn+1

Sun Sun
Lab n posted ~> L Mon II::E :+d1u|§osted
Tues Tues
Read and begin lab / Wed Wed
Thurs Thurs
Fri Fri
Sat Sat

Blue: class meetings

Lab (Tuesdays 1-2pm and 2-3pm)

Lab attendance is required! Please email me if
you will be missing lab

Usually give a short introduction to everyone

Occasionally pair-programming or warm-up
exercises

| will check in with everyone and answer
guestions individually or in groups

Learning Goals

Understand how algorithms make decisions based on data
Understand the theoretical foundations of DS

— applied linear algebra, probability, statistics, modeling
information theory, and optimization

Be able to implement the theory and apply it to a variety of
domains

Analyze the ethical use of data and weigh tradeoffs in data
collection and usage

Understand and apply best practices in data visualization

Throughout and during the project: hypothesis
development, featurization, algorithm selection,
interpretation of results, iteration, conclusions

Comfort with using advanced Python topics such as libraries
and object-oriented design

Topics (tentative)

Representing data
Common Python libraries
Object-oriented Python
Modeling

Linear models

Applied linear algebra
Optimization

Gradient descent
Confusion matrices

ROC curves

Probabilistic modeling

Naive Bayes algorithm

Ethics and protected features
Information theory

Data visualization
Dimensionality reduction
Clustering

Permutation testing and
bootstrapping

Hypothesis testing

There will be math!

THIS 1S YOUR MACHINE (EARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWJERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE LIRONG?)

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Different Backgrounds

* Prerequisites: Data Structures, Discrete Math (co-
req), Calculus |

 May or may not have statistics, probability, linear
algebra, etc

* Class roster spans first-year through senior

Readings

* We will draw upon several online textbooks

* As well as supplemental online readings and research
papers

Textbook:

You do not need to purchase a textbook for this course. We will draw from several online textbooks, as well
as supplemental online readings and research papers.

Model-Based Machine Learning by John Winn ("Winn" in schedule below)

Mathematics for Machine Learning by Deisenroth, Faisal, and Ong ("MML" in schedule below)

Doing Bayesian Data Analysis by John K. Kruschke ("DBD" in schedule below)

A Course in Machine Learning by Hal Duame III ("Duame" in schedule below)

(optional) Visualization Analysis and Design by Tamara Munzner

Course Components
Labs (8 total): 35%

Midterms: 40% (20% each)

Final project: 15%
— includes an oral presentation and “lab notebook”

Participation: 10%

— includes attendance, Piazza, note-taking, and
general engagement with the course

My Expectations

Come to class (Tu/Thurs) and lab (Th), ON TIME, and actively participate
— Email me if you will be absent from class or lab
Complete reading before lab on Tuesday (some is technical, do your best)
Come to office hours and TA hours. My office hours: Mondays 2:30-4pm in H110

Post questions on Piazza

WEEK || DAY || ANNOUNCEMENTS | TOPIC & READING LABS

Introduction to Data Science and
Python

Sep

05 What can we learn from data?

Representing data

Crash course on Python
Numpy

Matplotlib (plotting in Python)
Classes and objects in Python
Dictionaries

Lab 1: Computing
and plotting in
Python

=
[] [] [] L] [] [] []

Sep
07 Reading:

e MML Chap 1

Syllabus Notes

(Note: you are responsible for reading the entire syllabus on the course webpage)

Notes and slides will be posted after class on the course webpage

Lab is mandatory (attendance will be taken)

Labs may have an optional pair programming component

You will get 4 late days during the semester (up to 2 on any one assignment)
Extensions beyond these two days must be arranged with your class dean
Email: allow at least 24 hours for a response (more during weekends)

Piazza: should be used for all content/logistics questions

Participation

What counts as participation?

Asking and answering questions in class (very important!)

— Will call on groups, but only after giving you a few minutes to
think/discuss

Actively participating in in-class activities (group work, handouts, polls)
Collaborating with your lab partner for any pair-programming exercises
Asking and answering questions on Piazza

— Avoid long blocks of code and giving away answers

— Only non-anonymous public posts count toward participation grade

Attending office hours and TA hours

Academic Integrity

Faculty statement on academic integrity

In a community that thrives on relationships between students and faculty that are based on trust and
respect, it is crucial that students understand a professor's expectations and what it means to do academic
work with integrity. Plagiarism and cheating, even if unintentional, undermine the values of the Honor Code
and the ability of all students to benefit from the academic freedom and relationships of trust the Code
facilitates. Plagiarism is using someone else's work or ideas and presenting them as your own without
attribution. Plagiarism can also occur in more subtle forms, such as inadequate paraphrasing, failure to cite
another person's idea even if not directly quoted, failure to attribute the synthesis of various sources in a
review article to that author, or accidental incorporation of another's words into your own paper as a result of
careless note-taking. Cheating is another form of academic dishonesty, and it includes not only copying, but
also inappropriate collaboration, exceeding the time allowed, and discussion of the form, content, or degree
of difficulty of an exam. Please be conscientious about your work, and check with me if anything is unclear.

Academic Integrity

Note for CS260 in particular

Discussing ideas and approaches to problems with
others on a general level is fine (in fact, we encourage
you to discuss general strategies with each other), but

you should never read anyone else's code or let
anyone else read your code.

Github copilot (or any other software for
automatically generating code) is not allowed
for this course, until the final project. The reasoning
behind this decision is that code generation tools often
create code that is not well understood by the user.
Often this code becomes incorrect in the larger
context of the program. However, for the final project
you are welcome to use Github copilot, and you'll be
asked to reflect on your experience.

Academic Accommodations

Faculty statement on accommodations

Haverford College is committed to providing equal access to students with a disability. If you have (or think
you have) a learning difference or disability — including mental health, medical, or physical impairment -
please contact the Office of Access and Disability Services (ADS) at hc-ads@haverford.edu. The
Coordinator will confidentially discuss the process to establish reasonable accommodations.

Students who have already been approved to receive academic accommodations and want to use their
accommodations in this course should share their verification letter with me and also make arrangements to
meet with me as soon as possible to discuss their specific accommodations. Please note that accommodations
are not retroactive and require advance notice to implement.

It is a state law in Pennsylvania that individuals must be given advance notice if they are to be recorded.
Therefore, any student who has a disability-related need to audio record this class must first be approved for
this accommodation from the Coordinator of Access and Disability Services and then must speak with me.
Other class members will need to be aware that this class may be recorded.

https://www.haverford.edu/access-and-disability-
services/accommodations/receiving-accommodations

https://www.haverford.edu/access-and-disability-services/accommodations/receiving-accommodations
https://www.haverford.edu/access-and-disability-services/accommodations/receiving-accommodations

Outline for Sept 5

* Python for this course

— Numpy
— Matplotlib

Python style

Decompose code into natural functions
Avoid global variables (sometimes useful)

Include a file header with purpose, author,
and date

Include headers for each function
No lines over 80 chars
Variable names implicitly show type

Include line breaks and comments!

Python style

e “Snake-case” not “camel-case”
—lirearSearch

— linear_search

(s

* Alphabetize imports and don’t use
—from-numpy-mport=*

— import numpy as np

Python style examples

Ask the user for their name and welcome them to CS21.
Author: Sara Mathieson
Date: 9/7/18

def main():

name = input("Enter your name: ")
print("Hello", name, "!")

main()

def factorial(n):

Given a non-negative integer n, return n! = nx(n-1)%(n-2)....3%2x%1.

fact = 1
for i in range(n):

fact = fact * (i+1)
return fact

Structure of main and “helper” functions

Main (driver)

Helper Helper

Functionl Function
Helper 3

Function
p)

Structure of main and “helper” functions

Reminder: steps of top-down-design (TDD)

Reminder: steps of top-down-design (TDD)

1) Design a high-level main function that captures the basic idea of
the program.

Reminder: steps of top-down-design (TDD)

1) Design a high-level main function that captures the basic idea of
the program.

2) As you're writing/designing main, think about which details can
be abstracted into small tasks. Make names for these functions
and write their signatures below main.

1)

2)

3)

Reminder: steps of top-down-design (TDD)

Design a high-level main function that captures the basic idea of
the program.

As you're writing/designing main, think about which details can
be abstracted into small tasks. Make names for these functions
and write their signatures below main.

“Stub” out the functions. This means that they should work and
return the correct type so that your code runs, but they don’ t do
the correct task yet. For example, if a function should return a
list, you can return []. Or if it returns a boolean, you can return
False.

1)

2)

3)

Reminder: steps of top-down-design (TDD)

Design a high-level main function that captures the basic idea of
the program.

As you're writing/designing main, think about which details can
be abstracted into small tasks. Make names for these functions
and write their signatures below main.

“Stub” out the functions. This means that they should work and
return the correct type so that your code runs, but they don’ t do
the correct task yet. For example, If a function should return a
list, you can return []. Or if it returns a boolean, you can return

False.

lterate on your design until you have a working main and stubbed
out functions. Then start implementing the functions, starting

from the “bottom up”.

Reasons to use TDD

« Creates code that is easier to implement, debug,
modify, and extend

* Avoids going off in the wrong direction (i.e.
implementing functions that are not useful or
don’t serve the program)

* Creates code that is easier for you or someone
else to read and understand later on

DEMO + Handout 1

* Matplotlib
* Numpy

Given an input phrase and a letter, count how many times that letter appears
in the phrase. For example:

phrase: creative code
letter: e
Number of e's: 3

Author: Jeff Knerr & Sara Mathieson HandOUt 1

Date: 9/21/18 .
(example solution)

def main():

phrase = input("phrase: ")
letter = input("letter: ")
num_chars = len(phrase)

count = 0
for i in range(num_chars):

if phrase[i] == letter:
count = count + 1

print ("Number of %s's: %i" % (letter, count))

main()

TODO

 Read over Lab 1, accept assignment on github

— (can be done during lab)

e Come to lab TODAY!
— Lab A: 1-2pm (H110)
— Lab B: 2-3pm (H110)

* Reading: MML Chap 1

