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Admin

Midterm 1 due Thursday at the beginning of
class (take in a 2.5 hour block)

Thursday: begin in-person classes with Prof.
Farias

Lab on Thursday: project meetings with all
groups

— okay if you’ve been focusing on the midterm instead — use
the time to make progress on the project

Note-taker: Rahul



Outline for November 16

* Biases in data collection
* Biases in data usage
* |ssues that arise with algorithm choice

* Open time for midterm review Q&A

Content Warning



What does it mean to claim that algorithms are
biased (or racist or political...)?

3| model = initialization(...)

4 | n epochs =

5| train data =

6 | for 1 in n epochs:

7 train data = shuffle(train data)

8 X, y = split(train data)

9 predictions = predict (X, model)
error = calculate error(y, predictions)
model = update model (model, error)

Pseudocode from A Gentle Introduction to Mini-Batch Gradient Descent and How to Confiqure Batch Size

Slide: Ameet Soni


https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/

Is machine learning fair by default?

“After all, as the former CPD [Chicago Police Department] computer experts
point out, the algorithms in themselves are neutral. ‘This program had
absolutely nothing to do with race... but multi-variable equations,’ argues

Goldstein. Meanwhile, the potential benefits of predictive policing are
profound.”

-Gilian Tett



Target variable/intended use
Subjective labels

Proxy variables

Feature Selection/Engineering
Source of training data
Transparency

Validation

Slide: Ameet Soni



Algorithms do not exist in a bubble

 Inherit the prejudices of their designers

« Reflect cultural biases

o Difficult to identify - can entrench/enhance
Issues

« Deny historically disadvantaged groups full
participation

Slide: Ameet Soni



Outline for November 16

e Biases in data collection



“The Missing Diversity in Human Genetic Studies” (Cell, 2019)
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Figure 2. Summary of GWAS Studies by Ancestry for Studies in the GWAS Catalog through January 2019

We show the distribution of ancestry categories in percentages included in GWAS (https://www.ebi.ac.uk/gwas/home) based on the study (left) and based on the
total number of individuals (right).




“Clinical use of current polygenic risk scores may exacerbate health disparities”

(Nature Genetics 2019)
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Example: job ads based on historical data

* Prestigious job ads automatically shown to men but not
women

e Screenshot of Google image search for “CEQ”

https://www.washingtonpost.com/news/the-intersect/wp/2015/07/06/googles-algorithm-
shows-prestigious-job-ads-to-men-but-not-to-women-heres-why-that-should-worry-you/



https://www.washingtonpost.com/news/the-intersect/wp/2015/07/06/googles-algorithm-shows-prestigious-job-ads-to-men-but-not-to-women-heres-why-that-should-worry-you/

Example: Facial Recognition and
Dataset Bias
1. HP Webcam
https://www.youtube.com/watch?v=t4DT3tQq
gRM
2. Gender Shades

https://www.youtube.com/watch?v=-
ydGhdYdOM

ERROR
A9

DIFFERENCE

IEM

Slide: Ameet Soni



https://www.youtube.com/watch?v=t4DT3tQqgRM
https://www.youtube.com/watch?v=-_ydGhdYd0M

Example: cameras and webcams

* Many cameras and webcams have not been trained
with racial and ancestral diversity in mind

Are Face-Detection Cameras Racist?

By Adam Rose ' Friday, Jan. 22, 2010

http://content.time.com/time/business/article/0,8599,1954643,00.html|



http://content.time.com/time/business/article/0,8599,1954643,00.html

Example: loans and credit

* Housing loans (mortgages) given/denied automatically;
correlate with neighborhoods and race

 Features that correlate with whether or not a user will
pay back a loan:

o Borrower type of computer (Mac or PC).

O

Type of device (phone, tablet, PC).
o Time of day you applied for credit (borrowing at 3am is not a good sign).
o Your email domain (Gmail is a better risk than Hotmail).

o Is your name part of your email (names are a good sign).

REPORT

Credit denial in the age of Al

https://www.brookings.edu/research/credit-denial-in-the-age-of-ai/

Aaron Klein - Thursday, April 11, 2019



https://www.brookings.edu/research/credit-denial-in-the-age-of-ai/

Outline for November 16

* Biases in data usage



LEFT OUT

UK biobank recruitment reflected diversity (in 2001; ref. 11). Analyses do not.

United Kingdom UK Biobank
population (2001) participants
5.4%
5.5% Minority proportion
Minority proportion (recruitment)
f
0.06%

Minority proportion
(analyses)



Outline for November 16

* |ssues that arise with algorithm choice



Inductive Bias

Training Data

Testing Data

T/

Figures 2.1 and 2.2 from Duame



Inductive Bias

Training Data

Testing Data
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Figures 2.1 and 2.2 from Duame



Training Data Inductive Bias

Testing Data

A: “bird”
B: “mamma

|H

Figures 2.1 and 2.2 from Duame
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tSNE: different way of doing dimensionality reduction and visualization
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PCA vs. tSNE on genetic data
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Preserve structure

Preserve distance

How to visualize data always depends on the data, and the question

There is rarely if ever a single correct approach



Example: Propublica, Machine Bias

“Criminal justice agencies across the nation use COMPAS to inform decisions regarding the placement, supervision
and case management of offenders. COMPAS was developed empirically with a focus on predictors known to affect
recidivism. It includes dynamic risk factors, and it provides information on a variety of well validated risk and
needs factors designed to aid in correctional intervention to decrease the likelihood that offenders will reoffend.”
- Northpointe COMPAS Practitioner's Guide

e An algorithm to assess potential recidivism risk. Risk scales
for general recidivism, violent recidivism, and pretrial
misconduct.

e Input: answers to 137 questions by defendant (or taken
from records) uses such factors such as poverty,
joblessness and other variables

o Northpointe reports that accuracy is high and equal across
race (V68%)

Slide: Ameet Soni



Example: Propublica, Machine Bias

Two Drug Possession Arrests Two Petty Theft Arrests

"~ DYUANIEUGETIS BERNARD PARKER SVERNON PRAT <& BRISHA BORDEN
LOW RISK 3  HIGH RISK 10 LOW RISK 3 HIGH RISK 8
Fugett was rated low risk after being arrested with cocaine and Borden was rated high risk for future crime after sheand a

marijuana. He was arrested three times on drug charges after friend took a kid's bike and scooter that were sitting outside.
that. She did not reoffend.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing



https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Example: Propublica, Machine Bias
Prediction Fails Differently for Black Defendants

WHITE AFRICAN AMERICAN

Labeled Higher Risk, But Didn't Re-Offend

Labeled Lower Risk, Yet Did Re-Offend

White African American

Slide: Ameet Soni
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing



https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Example: Propublica, Machine Bias
Prediction Fails Differently for Black Defendants

WHITE AFRICAN AMERICAN

Labeled Higher Risk, But Didn’t Re-Offend

Labeled Lower Risk, Yet Did Re-Offend
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Slide: Ameet Soni
4. p =] .* https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
»




Are there any beneficial examples of
Machine Learning?

Medical scans
Machine translation

ML for accessibility
— Speech to text
— Image captions
— Website navigation

Neural networks in
evolution

https://lhncbc.nlm.nih.gov/publicatio

n/pub9932 (NIH malaria dataset)



https://lhncbc.nlm.nih.gov/publication/pub9932

Generative Approaches

* |[n population genetics we often need high-
quality simulated data for validation (not
many “labels” in evolution)

* Simulation parameters used for European
populations were historically used for other

groups

* Use of GANs (generative adversarial networks)
can create accurate simulated data for any

population



Admissions at Haverford

* Haverford has suddenly started receiving 10x
more applications than usual

* You are tasked with creating an algorithm to
determine whether or not an applicant should
be admitted

* Questions:
— How would you encode features?

— How would you use past admission data to train?
— What cost function are you trying to optimize?



Outline for November 16

* Open time for midterm review Q&A



