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Admin
• Midterm 1 handed out on Thursday (due the 

following Thursday – take in a 2 hour block)

• Thursday: review session in class/lab

• TODAY: make sure you have a midterm Study 
Guide and Handout 9 (or back of Handout 8)

• Note-taker: Joseph



Lab 4
• Lab 4 due TONIGHT
• Office hours today 3:30-5pm (H204)
• TA hours tonight 6:30-8:30pm (H110)



Midterm 1 Notes
• Handed out in class this Thursday, due the 

following Thursday.
• Timed exam: 2 hour limit. DO NOT open the exam 

until you are ready to take it for 2 hours!
• You may use a one page (front and back) “study 

sheet”, handwritten, created by you
• You may also use a calculator
• Outside of your “study sheet” and calculator, no 

other notes or resources
• As per the Honor Code, all work must be your own



Outline for September 28

• Go over Lab 2

• Intro to Bayesian models

• Intro to algorithmic bias

• Redundantly encoded features and 
disparate impact
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Components of a Bayesian Model

• Identify the evidence, prior, posterior, and 
likelihood in the equation below



• Identify the evidence, prior, posterior, and 
likelihood in the equation below

• Evidence: this is the data (features) we 
actually observe, which we think will help us 
predict the outcome we’re interested in 

Components of a Bayesian Model



• Identify the evidence, prior, posterior, and 
likelihood in the equation below

• Prior: without seeing any evidence (data), 
what is our prior believe about each outcome 
(intuition: what is the outcome in the 
population as a whole?)

Components of a Bayesian Model



• Identify the evidence, prior, posterior, and 
likelihood in the equation below

• Posterior: this is the quantity we are actually 
interested in. *Given* the evidence, what is 
the probability of the outcome?

Components of a Bayesian Model



• Identify the evidence, prior, posterior, and 
likelihood in the equation below

• Likelihood: given an outcome, what is the 
probability of observing this set of features?

Components of a Bayesian Model



Examples

• Last time: wanted to compute the probability 
an email message was spam, given the words
of the email

• Another example: what is the probability of 
Trisomy 21 (Down Syndrome), given the 
amount of sequencing of each chromosome?



Input data are read counts for each chromosome (1,2,…,n):

Bayesian Model for Trisomy 21 (T21)



A probabilistic model for detecting fetal aneuploidy from
low-coverage sequencing of maternal plasma DNA

Sara Sheehan
MCB 243, Spring 2014

May 5, 2014

Introduction

Probabilistic model

We start with the case of trying to detect trisomy 21, assuming there are no other aneuploidies.
We denote a trisomy 21 event by T21. Let our input data be the counts of reads that map to
chromosomes 1, 2, · · · , n, which we denote q1, q2, · · · , qn = ~q where

nX

i=1

qi = N

is the total number of uniquely mappable reads. We would like to compute the probability of trisomy
21, given ~q. Using Bayes rule and then normalizing, we can rewrite this as:

P(T21|~q ) =
P(~q |T21) · P(T21)

P(~q )

=
P(~q |T21) · P(T21)

P(~q |T21) · P(T21) + P(~q |TC
21) · P(TC

21)

P(T21) should be the probability of trisomy 21 in the population, conditional on the mother’s age,
and possibly other factors such as ethnicity. For now we let P(T21) = 1/1000. So the main quantity
to compute is P(~q |T21), which can be described by a multinomial distribution with probabilities
p⇤1, p

⇤
2, · · · , p⇤n of reads coming from each of the n chromosomes, given a trisomy 21 situation. We

let p1, p2, · · · , pn be the probabilities in the absense of trisomy 21. Therefore

P(~q |T21) / (p⇤1)
q1(p⇤2)

q2 · · · (p⇤n)qn

P(~q |TC
21) / (p1)

q1(p2)
q2 · · · (pn)qn

But we still need to model p⇤i as using the maternal chromosomes and the fetal chromsomes. Let
P(M) be the probability that a read came from maternal DNA, and let P(F ) = 1 � P(M) = ✏ be
the probability that a read came from fetal DNA. For now we will assume that these probabilities
are relatively unchanged in the event of trisomy 21, i.e. there is a constant fraction of DNA from
the fetus in maternal blood. Then we can rewrite pi as

p⇤i = P(F ) · P(read came from chrom i|F, T21) + P(M) · P(read came from chrom i|M,T21)

For now we will assume a uniform coverage model for all the chromosomes. Therefore

p⇤i =
`⇤iPn
r=1 `

⇤
r

1
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Input data are read counts for each chromosome (1,2,…,n):

Goal:

Bayesian Model for Trisomy 21 (T21)
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Input data are read counts for each chromosome (1,2,…,n):

Goal: Prior probability of T21



Prior: 

P(T21) 

Maternal Age Trisomy 21 All Trisomies
20 1 in 1,667 1 in 526
21 1 in 1,429 1 in 526
22 1 in 1,429 1 in 500
23 1 in 1,429 1 in 500
24 1 in 1,250 1 in 476
25 1 in 1,250 1 in 476
26 1 in 1,176 1 in 476
27 1 in 1,111 1 in 455
28 1 in 1,053 1 in 435
29 1 in 1,000 1 in 417
30 1 in 952 1 in 384
31 1 in 909 1 in 384
32 1 in 769 1 in 323
33 1 in 625 1 in 286
34 1 in 500 1 in 238
35 1 in 385 1 in 192
36 1 in 294 1 in 156
37 1 in 227 1 in 127
38 1 in 175 1 in 102
39 1 in 137 1 in 83
40 1 in 106 1 in 66
41 1 in 82 1 in 53
42 1 in 64 1 in 42
43 1 in 50 1 in 33
44 1 in 38 1 in 26
45 1 in 30 1 in 21
46 1 in 23 1 in 16
47 1 in 18 1 in 13
48 1 in 14 1 in 10
49 1 in 11 1 in 8



Handout 9 (back of Handout 8)





Outline for September 28

• Go over Lab 2

• Intro to Bayesian models

• Intro to algorithmic bias

• Redundantly encoded features and 
disparate impact



What does it mean to claim that algorithms are 
biased (or racist or political…)?

3
4
5
6
7
8
9

model = initialization(...)
n_epochs = ...
train_data = ...
for i in n_epochs:

train_data = shuffle(train_data)
X, y = split(train_data)
predictions = predict(X, model)
error = calculate_error(y, predictions)
model = update_model(model, error)

Pseudocode from A Gentle Introduction to Mini-Batch Gradient Descent and How to Configure Batch Size

Slide: Ameet Soni

https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/


Are algorithms fair by default?

-Gilian Tett



Sample size disparity

• More data from majority 
will make results more 
accurate for that group

• Less accurate for the 
minority

“The error of a classifier often decreases as the inverse square root of the 
sample size. Four times as many samples means halving the error rate.”

Image: Moritz Hardt



“Modeling a heterogeneous population as a gaussian mixture and learning its parameters using the EM algorithm. As 
expected, the estimates for the smaller group are significantly worse than for the larger. Dashed red ellipsoids describe the
estimated covariance matrices. Solid green defines the correct covariance matrices. The green and red crosses indicate 
correct and estimated means, respectively.” Image: Moritz Hardt

Green: true
Red: estimated

Sample size disparity



Cultural Differences

“Positively labeled examples are on opposite sides of the classifier for the two groups.” Image: Moritz Hardt

Goal: determine if a user profile (on Facebook, Twitter, etc) is genuine
• positive: real profile
• negative: fake profile

Feature: length of name



Undesired Complexity

“Even if two groups of the population admit simple classifiers, the whole population may not.”
Image: Moritz Hardt



“How big data is unfair”
(takeaways)

• ML is not fair by default, even though it relies 
on “neutral” multi-variable equations

• If training data reflects social biases, algorithm 
will likely incorporate them

• “Protected” attributes (race, gender, religion, 
sexual orientation, etc) often redundantly 
encoded



Slide: Ameet Soni

Example: machine translation



Slide: Ameet Soni

Example: machine translation



Challenges

Algorithms do not exist in a bubble

● Inherit the prejudices of their designers
● Reflect cultural biases
● Difficult to identify - can entrench/enhance 

issues
● Deny historically disadvantaged groups full 

participation

Slide: Ameet Soni



Outline for September 28

• Go over Lab 2

• Intro to Bayesian models

• Intro to algorithmic bias

• Redundantly encoded features and 
disparate impact



How can we tell if an algorithm is biased?

D: dataset with attributes X, Y
* X is protected
* Y is unprotected (other features)

“Certifying and Removing Disparate Impact” Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, Suresh Venkatasubramanian
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D: dataset with attributes X, Y
* X is protected
* Y is unprotected (other features)

Goal: determine outcome C (hired, admitted, etc)

“Certifying and Removing Disparate Impact” Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, Suresh Venkatasubramanian



How can we tell if an algorithm is biased?

D: dataset with attributes X, Y
* X is protected
* Y is unprotected (other features)

Goal: determine outcome C (hired, admitted, etc)

Direct discrimination: C = f(X)
* Female instrumentalist not hired for orchestra
* Some ethnic groups not allowed to eat at a restaurant

“Certifying and Removing Disparate Impact” Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, Suresh Venkatasubramanian



How can we tell if an algorithm is biased?

D: dataset with attributes X, Y
* X is protected
* Y is unprotected (other features)

Goal: determine outcome C (hired, admitted, etc)

Indirect discrimination: C = f(Y)
* but strong correlation between X and Y
* Ex: housing loans
* Ex: programming experience

“Certifying and Removing Disparate Impact” Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, Suresh Venkatasubramanian







Example of repair
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Discussion: admissions at Haverford

• Haverford has suddenly started receiving 10x 
more applications than usual

• You are tasked with creating an algorithm to 
determine whether or not an applicant should 
be admitted

• Questions:
– How would you encode features?
– How would you use past admission data to train?
– What loss function are you trying to optimize?


