CS 360: Machine Learning
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Admin

e Office hours today 11-12pm (stay on the link)
— Will talk first to people | didn’t get to in lab

* Lab 8 due Friday Nov 20

— Let me know if you would like individual deadlines

* After Thanksgiving — two options for capstone
— Midterm 2 (midterm material ends Nov 20)
— Final project (posted soon)
— | will update grade percentages soon



Outline for November 13

Introduction to neural networks

Fully connected (FC) neural networks

Convolutional neural networks (CNNs)

Next week: more details on training NNs



Outline for November 13

* Introduction to neural networks



Biological Inspiration
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Figure: Stanford CS231n http://cs231n.github.io/neural-networks-1/



Goal: learn from complicated inputs

° Y, | glasses?

Y, | smiling?

Y3 | identity?

parameters

input data

Image: Labeled Faces in the Wild (UMass)



ldea: transform data into lower dimension

input data




Multi-layer networks = “deep learning”

Y,  glasses?

Y, | smiling?

Y3 | identity?

parameters

hidden

layer 2
hidden
input data layer 1




History of Neural Networks

Perceptron can be interpreted as a simple
neural network

Misconceptions about the weaknesses of
perceptrons contributed to declining funding
for NN research

Difficulty of training multi-layer NNs
contributed to second setback

Mid 2000’s: breakthroughs in NN training
contribute to rise of “deep learning”



Number of papers that mention “deep
learning” over time
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Big picture for today

* Neural networks can approximate any function!
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Big picture for today

Neural networks can approximate any function!

For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

We will train our network by asking it to minimize
the loss between its output and the true output

We will use SGD-like approaches to minimize loss



Outline for November 13

* Fully connected (FC) neural networks



Fully Connected Neural Network Architecture
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Option 1: sigmoid function

* |[nput: all real numbers, output: [0, 1]

1
o(x) = P
1 —I_ e—x USE /"
e Derivative is convenient S

o'(z) = o(z)(1 - o(z))




Option 2: hyperbolic tangent

* |[nput: all real numbers, output: [-1, 1]
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Option 3: Rectified Linear Unit (ReLU)

* Return x if x is positive (i.e. threshold at 0)

f(x) = max(0, x)
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Pros and Cons of Activation Functions

1) Sigmoid .

(-) When input becomes very positive or very negative,

gradient approaches 0 (saturates and stops gradient descent)

* (-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

* (+) Derivative is easy to compute given function value!

http://cs231n.github.io/neural-networks-1/



http://cs231n.github.io/neural-networks-1/

Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

(-) When input becomes very positive or very negative,
gradient approaches 0 (saturates and stops gradient descent)
(-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

(+) Derivative is easy to compute given function value!

(-) Still has a tendency to prematurely kill the gradient

(+) Zero-centered so we get a range of gradients

(+) Rescaling of sigmoid function so derivative is also not too
difficult

http://cs231n.github.io/neural-networks-1/
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Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

3) RelLU

(-) When input becomes very positive or very negative,
gradient approaches 0 (saturates and stops gradient descent)
(-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

(+) Derivative is easy to compute given function value!

(-) Still has a tendency to prematurely kill the gradient

(+) Zero-centered so we get a range of gradients

(+) Rescaling of sigmoid function so derivative is also not too
difficult

(+) Works well in practice (accelerates convergence)

(+) Function value very easy to compute! (no exponentials)
(-) Units can “die” (no signal) if input becomes too negative
throughout gradient descent

http://cs231n.github.io/neural-networks-1/
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Cross Entropy Loss



Goal: find a function between input and output

® Y, | glasses?

Y, ' smiling?

Y, | identity?

parameters

input data




First idea: one hidden layer




Second idea: more hidden layers (“deep” learning)

hidden
input data layer 1




Flatten pixels of image into a single vector




Detour to autoencoders




Detour to autoencoders
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Detour to autoencoders
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Detour to autoencoders
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Use unsupervised pre-training to find a function
from the input to itself




Hidden units can be interpreted as edges

hidden
input data layer 1 reconstructed input




Now: throw away reconstruction and input

hidden
input data layer 1




Now: throw away reconstruction and input
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Then repeat the entire process for each layer
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Then repeat the entire process for each layer




Then repeat the entire process for each layer




Then repeat the entire process for each layer

=B IE

—
S

=.
o
o
@
B

layer 2




In the last layer, use the outputs (supervised)

Y, | glasses?
Y, | smiling?

Y, | identity?

parameters
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In the last layer, use the outputs (supervised)

Y, | glasses?
Y, | smiling?

Y, | identity?

parameters
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Finally, “fine-tune” the entire network!

Y, | glasses?

Y, | smiling?

Y, | identity?

parameters

hidden
input data layer 1




Takeaways

* As the number of parameters grows, a non-convex
function often has more and more local minima

e Starting at a “good” point is crucial!

Convex Non-convex



Takeaways

* Unsupervised pre-training uses latent structure in
the data as a starting point for weight initialization

e After this process, the network is “fine-tuned”

* |n practice this has been found to increase
accuracy on specific tasks (which could be
specified after feature learning)



Takeaways

* Unsupervised pre-training uses latent structure in
the data as a starting point for weight initialization

e After this process, the network is “fine-tuned”

* |n practice this has been found to increase
accuracy on specific tasks (which could be
specified after feature learning)

Recent Example: OpenAl’s GPT-2

* “Language Models are Unsupervised Multitask Learners”
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

* Decision not to release full model: https://openai.com/blog/better-language-models/



https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://openai.com/blog/better-language-models/

Weight initialization

* We still have to initialize the pre-training

e All O’s initialization is bad! Causes nodes to
compute the same outputs, so then the

weights go through the same updates during
gradient descent

* Need asymmetry! => usually use small
random values



e Sofari

Mini-batches

n this class, we have considered

stochastic gradient descent, where one data

point is used to compute the gradient and
update the weights

e Onthe

where
to all t

e A mido

flipside is batch gradient descent,
we compute the gradient with respect
ne data, and then update the weights

le ground uses mini-batches of

examp

es before updating the weights. This is

the approach we will use in Lab 8.



Lab 8 data pre-processing

* |tis helpful to have our data be zero-centered, so
we will subtract off the mean

* |tis also helpful to have the features be on the
same scale, so we will divide by the standard
deviation

* We will compute the mean and std with respect
to the training data, then apply the same
transformation to all datasets



Lab 8 data pre-processing

* |Input is now itself a multi-dimensional array

* For images, often the shape of each image will
be (width, height, 3) for RGB channels

* Need to “flatten” or “unravel” for fully
connected networks
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Notes about scores and softmax

The output of the final fully connected layer is a vector
of length K (number of classes)

The raw scores are transformed into probabilities using
the softmax function: (let s, be the score for class k)

Then we apply cross-entropy loss to these probabilities



Notes about scores and softmax

The output of the final fully connected layer is a vector
of length K (number of classes)

The raw scores are transformed into probabilities using
the softmax function: (let s, be the score for class k)

e’k
S Think about outside of class:
yk T K S  Why do we use exp?
E :j=1 €"J * Why don’t we just take the max score?

Then we apply cross-entropy loss to these probabilities



Outline for November 13

* Convolutional neural networks (CNNs)



Motivation for moving away from FC architectures

* For a 32x32x3 image (very smalll) we have
p=3072 features in the input layer

* For a 200x200x3 image, we would have
p=120,000! doesn’t scale



Motivation for moving away from FC architectures

* For a 32x32x3 image (very smalll) we have
p=3072 features in the input layer

* For a 200x200x3 image, we
p=120,000! doesn’t scale

* FC networks do not explicit
structure of an image and t
relationships between near

would have

y account for the
he correlations/

Oy pixels



ldea: 3D volumes of neurons

* Do not “flatten” image, keep it as a volume with
width, height, and depth



ldea: 3D volumes of neurons

* Do not “flatten” image, keep it as a volume with
width, height, and depth

 For CIFAR-10, we would have:
— Width=32,  Height=32, Depth=3

y

o=
3




ldea: 3D volumes of neurons

Do not “flatten” image, keep it as a volume with
width, height, and depth

For CIFAR-10, we would have:
— Width=32,  Height=32, Depth=3
Each layer is also a 3 dimensional volume
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ldea: 3D volumes of neurons

Do not “flatten” image, keep it as a volume with
width, height, and depth

For CIFAR-10, we would have:
— Width=32,  Height=32, Depth=3
Each layer is also a 3 dimensional volume

The output layer is 1x1xC, where Cis the number of
classes (10 for CIFAR-10)

32 \
g 32 o, Ry R P O
- a w w
/’* ooooo

o
3




