CS 360: Machine Learning

Prof. Sara Mathieson
Fall 2020

I—IAVE RFORD

Ol EGol

Admin

e Office hours today 11-12pm (stay on the link)
— Will talk first to people | didn’t get to in lab

* Lab 8 due Friday Nov 20

— Let me know if you would like individual deadlines

* After Thanksgiving — two options for capstone
— Midterm 2 (midterm material ends Nov 20)
— Final project (posted soon)
— | will update grade percentages soon

Outline for November 13

Introduction to neural networks

Fully connected (FC) neural networks

Convolutional neural networks (CNNs)

Next week: more details on training NNs

Outline for November 13

* Introduction to neural networks

Biological Inspiration

impulses carried
toward cell body
branches
of axon

axon
terminals

impulses carried
away from cell body

i) wo

*@® synapse

axon from a neuron ™\

. WoTo
N

dendrite \

cell body

1 (Z w;T; + b)
Zwiwi +0b :

output axon

activation
function

w11

A

Wo T2

Figure: Stanford CS231n http://cs231n.github.io/neural-networks-1/

Goal: learn from complicated inputs

° Y, | glasses?

Y, | smiling?

Y3 | identity?

parameters

input data

Image: Labeled Faces in the Wild (UMass)

ldea: transform data into lower dimension

input data

Multi-layer networks = “deep learning”

Y, glasses?

Y, | smiling?

Y3 | identity?

parameters

hidden

layer 2
hidden
input data layer 1

History of Neural Networks

Perceptron can be interpreted as a simple
neural network

Misconceptions about the weaknesses of
perceptrons contributed to declining funding
for NN research

Difficulty of training multi-layer NNs
contributed to second setback

Mid 2000’s: breakthroughs in NN training
contribute to rise of “deep learning”

Number of papers that mention “deep
learning” over time

1000}

8 800 2006: Hinton and Salakhutdinov 1
S make a break-through in
'_E initializing deep learning networks
© 600} :
Y
o
-
Q
Q
& 400} 1
-
-

200 y

1%80 1985 1990 1995 2000 2005 2010

year

Big picture for today

* Neural networks can approximate any function!

Big picture for today

* Neural networks can approximate any function!

* For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

Big picture for today

* Neural networks can approximate any function!

* For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

* We will train our network by asking it to minimize
the loss between its output and the true output

Big picture for today

Neural networks can approximate any function!

For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

We will train our network by asking it to minimize
the loss between its output and the true output

We will use SGD-like approaches to minimize loss

Outline for November 13

* Fully connected (FC) neural networks

Fully Connected Neural Network Architecture
AR

Lv)
« b

RaY

1) ~ L)
h' = W, -

S Fully Connected | Network Architecture -\« & Sev
" \l\{w - \n\pxs L\(' \’\{’S 2
>< : V\ \ \ O w ~ /\/\3;,/_\ \ o ; ey

L~ -~ O 7
Y, Ky X
] © m
| \ =
- P IV e
p ot
\/\/_J
Qe»k"‘"‘ <
-

g = (W L)

?“t.n P, *P s UL \()aw‘ﬂ"
Y 2T
(2

H(Z) - - (W \ - \0{) - ng\‘T(

p *vk_/‘)jj!im J

N A S T >

\f —

k Lo Pern o |

YSVN o i
N~ | o~ v 2

QB_'\L,R o o\b\{\\)"_ N - WM
VY QJ\QW“Q”\

Option 1: sigmoid function

* |[nput: all real numbers, output: [0, 1]

1
o(x) = P
1 —I_ e—x USE /"
e Derivative is convenient S

o'(z) = o(z)(1 - o(z))

Option 2: hyperbolic tangent

* |[nput: all real numbers, output: [-1, 1]

€T —XI
e — €
tanh(x) =
et +e 7
1.0F e
¥
o |
0.5;'."
;I
.......... S S
10 5 ‘c: 5 10
-o.i;:
/a' ;
e P

Option 3: Rectified Linear Unit (ReLU)

* Return x if x is positive (i.e. threshold at 0)

f(x) = max(0, x)

10 F

L A ro— A e e e e e e —

Pros and Cons of Activation Functions

1) Sigmoid .

(-) When input becomes very positive or very negative,

gradient approaches 0 (saturates and stops gradient descent)

* (-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

* (+) Derivative is easy to compute given function value!

http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

(-) When input becomes very positive or very negative,
gradient approaches 0 (saturates and stops gradient descent)
(-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

(+) Derivative is easy to compute given function value!

(-) Still has a tendency to prematurely kill the gradient

(+) Zero-centered so we get a range of gradients

(+) Rescaling of sigmoid function so derivative is also not too
difficult

http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

3) RelLU

(-) When input becomes very positive or very negative,
gradient approaches 0 (saturates and stops gradient descent)
(-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

(+) Derivative is easy to compute given function value!

(-) Still has a tendency to prematurely kill the gradient

(+) Zero-centered so we get a range of gradients

(+) Rescaling of sigmoid function so derivative is also not too
difficult

(+) Works well in practice (accelerates convergence)

(+) Function value very easy to compute! (no exponentials)
(-) Units can “die” (no signal) if input becomes too negative
throughout gradient descent

http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Cross Entropy Loss

Goal: find a function between input and output

® Y, | glasses?

Y, ' smiling?

Y, | identity?

parameters

input data

First idea: one hidden layer

Second idea: more hidden layers (“deep” learning)

hidden
input data layer 1

Flatten pixels of image into a single vector

Detour to autoencoders

Detour to autoencoders

WO

NS0
e/
LA
e
K
o e
(% (h)

e layer

input

Detour to autoencoders

@ WO e @
4/

\ ‘Q"\ A‘ /IA
\0» VW’,

/ "0 @
/" “

hidden

OS= @

reconstructed
input

input

Detour to autoencoders

A y
O) Cwm) A

N € /@\ 4 @)
L= | > \ /
QY 7 SN ®

@ layerCL/\o nS S— @

reconstructed

input @ input
\

Use unsupervised pre-training to find a function
from the input to itself

Hidden units can be interpreted as edges

hidden
input data layer 1 reconstructed input

Now: throw away reconstruction and input

hidden
input data layer 1

Now: throw away reconstruction and input

52
< gl
¢ a. I'\ _— f
(]
— 5

Then repeat the entire process for each layer

AR AN

SN WA

NI AN \
x

\
- \\ \\\
SS \
~o ~o - \\S\@
-~ ~ \\‘
reconstructed

input

Then repeat the entire process for each layer

Then repeat the entire process for each layer

Then repeat the entire process for each layer

=B IE

—
S

=.
o
o
@
B

layer 2

In the last layer, use the outputs (supervised)

Y, | glasses?
Y, | smiling?

Y, | identity?

parameters

=)
Q. i
g

layer 2

In the last layer, use the outputs (supervised)

Y, | glasses?
Y, | smiling?

Y, | identity?

parameters

=)
Q. i
g

layer 2

Finally, “fine-tune” the entire network!

Y, | glasses?

Y, | smiling?

Y, | identity?

parameters

hidden
input data layer 1

Takeaways

* As the number of parameters grows, a non-convex
function often has more and more local minima

e Starting at a “good” point is crucial!

Convex Non-convex

Takeaways

* Unsupervised pre-training uses latent structure in
the data as a starting point for weight initialization

e After this process, the network is “fine-tuned”

* |n practice this has been found to increase
accuracy on specific tasks (which could be
specified after feature learning)

Takeaways

* Unsupervised pre-training uses latent structure in
the data as a starting point for weight initialization

e After this process, the network is “fine-tuned”

* |n practice this has been found to increase
accuracy on specific tasks (which could be
specified after feature learning)

Recent Example: OpenAl’s GPT-2

* “Language Models are Unsupervised Multitask Learners”
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

* Decision not to release full model: https://openai.com/blog/better-language-models/

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://openai.com/blog/better-language-models/

Weight initialization

* We still have to initialize the pre-training

e All O’s initialization is bad! Causes nodes to
compute the same outputs, so then the

weights go through the same updates during
gradient descent

* Need asymmetry! => usually use small
random values

e Sofari

Mini-batches

n this class, we have considered

stochastic gradient descent, where one data

point is used to compute the gradient and
update the weights

e Onthe

where
to all t

e A mido

flipside is batch gradient descent,
we compute the gradient with respect
ne data, and then update the weights

le ground uses mini-batches of

examp

es before updating the weights. This is

the approach we will use in Lab 8.

Lab 8 data pre-processing

* |tis helpful to have our data be zero-centered, so
we will subtract off the mean

* |tis also helpful to have the features be on the
same scale, so we will divide by the standard
deviation

* We will compute the mean and std with respect
to the training data, then apply the same
transformation to all datasets

Lab 8 data pre-processing

* |Input is now itself a multi-dimensional array

* For images, often the shape of each image will
be (width, height, 3) for RGB channels

* Need to “flatten” or “unravel” for fully
connected networks

on<

x,Shepe = ng_/gv_/ 3>

/ V\/\"V“-‘_—ba‘ el
DN g (072733

- Ly e

Y
I\ g(\ L 2 an T

_,/\\JQ,\

, :%’2'32’3
A

= o+ 2

Notes about scores and softmax

The output of the final fully connected layer is a vector
of length K (number of classes)

The raw scores are transformed into probabilities using
the softmax function: (let s, be the score for class k)

Then we apply cross-entropy loss to these probabilities

Notes about scores and softmax

The output of the final fully connected layer is a vector
of length K (number of classes)

The raw scores are transformed into probabilities using
the softmax function: (let s, be the score for class k)

e’k
S Think about outside of class:
yk T K S Why do we use exp?
E :j=1 €"J * Why don’t we just take the max score?

Then we apply cross-entropy loss to these probabilities

Outline for November 13

* Convolutional neural networks (CNNs)

Motivation for moving away from FC architectures

* For a 32x32x3 image (very smalll) we have
p=3072 features in the input layer

* For a 200x200x3 image, we would have
p=120,000! doesn’t scale

Motivation for moving away from FC architectures

* For a 32x32x3 image (very smalll) we have
p=3072 features in the input layer

* For a 200x200x3 image, we
p=120,000! doesn’t scale

* FC networks do not explicit
structure of an image and t
relationships between near

would have

y account for the
he correlations/

Oy pixels

ldea: 3D volumes of neurons

* Do not “flatten” image, keep it as a volume with
width, height, and depth

ldea: 3D volumes of neurons

* Do not “flatten” image, keep it as a volume with
width, height, and depth

 For CIFAR-10, we would have:
— Width=32, Height=32, Depth=3

y

o=
3

ldea: 3D volumes of neurons

Do not “flatten” image, keep it as a volume with
width, height, and depth

For CIFAR-10, we would have:
— Width=32, Height=32, Depth=3
Each layer is also a 3 dimensional volume

32
depth
g 32 - a9 9 S O .
OO H) height
_ OOOO0OK;
> adeo/e/ee)!;
QOO0 width

e
3

ldea: 3D volumes of neurons

Do not “flatten” image, keep it as a volume with
width, height, and depth

For CIFAR-10, we would have:
— Width=32, Height=32, Depth=3
Each layer is also a 3 dimensional volume

The output layer is 1x1xC, where Cis the number of
classes (10 for CIFAR-10)

32 \
g 32 o, Ry R P O
- a w w
/’* ooooo

o
3

