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Admin

* Lab 5 due TODAY!
— Grace period until Wed night
—No office hours today (were yesterday)

* Lab 6 posted today

 Welcome prospective students!



Outline for October 20

Recap multi-class logistic regression

Introduction to ensemble methods

Bagging

Random forests

AdaBoost



Outline for October 20

* Recap multi-class logistic regression



Multi-class Logistic Regression
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Multi-class Logistic Regression: cost function
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Cross Entropy
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Outline for October 20

 Introduction to ensemble methods



Quiz: recap bias and variance
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Label each picture with variance (high or low) and bias (high or low)

Example from Ameet Soni



Quiz: recap bias and variance
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Label each picture with variance (high or low) and bias (high or low)
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Variance: low
Bias: high

Example from Ameet Soni
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Quiz: recap bias and variance
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Variance: low Variance: high
Bias: high Bias: high

Label each picture with variance (high or low) and bias (high or low)

Example from Ameet Soni



Quiz: recap bias and variance
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Variance: low Variance: high Variance: high
Bias: high Bias: high Bias: low

Label each picture with variance (high or low) and bias (high or low)

Example from Ameet Soni



Quiz: recap bias and variance
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Variance: low Variance: high Variance: high
Bias: high Bias: high Bias: low

C

This is the type of classifier
we want to average!

Label each picture with variance (high or low) and bias (high or low)

Example from Ameet Soni



Ensemble Idea

* Average the results from several models with
high variance and low bias

— Important that models be diverse (don’t want
them to be wrong in the same ways)

* |f n observations each have variance s?, then
the mean of the observations has variance
s?/n (reduce variance by averaging!)



Learning Theory

Let H be the hypothesis space

Three sources of|limitationsifor traditional classifiers:

* Statistical - H is too large relative to size of data

* Many hypotheses can fit the data by chance

+ Computational - H is too large to completely search for “best” model

+ Representational - H is not expressive enough




Learning Theory

# Statistical: Average of unstable models (high variance) has more stability

* Computational: searching from multiple starting points is better
approximation than one starting point

+ Representational: sum of many models can represent more hypotheses than
an individual model




Learning Theory

# Statistical: Average of unstable models (high variance) has more stability

* Computational: searching from multiple starting points is better
approximation than one starting point

+ Representational: sum of many models can represent more hypotheses than
an individual model

Ensembles can address all 3!



Learning Theory
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Outline for October 20

* Bagging



Bagging Algorithm

* Bagging = Bootstrap Aggregation [Brieman, 1996]

* Bootstrap (randomly sample with replacement) original data to create many
different training sets

* Run base learning algorithm on each new data set independently

Bootstrapped Bootstrapped
Sample (n=3) Sample (n=5) Sample (n=3) Sample (n=5)

Desmond Ong, Stanford

Modified from Ameet Soni
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Bootstrap: sample with replacement
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Notation for ensembles

T = # models/classifiers (index t)

X = test example (could be a vector)

Xt) = bootstrap training dataset t

h{t(x) = hypothesis about x from model t

r = probability of error of individual model

R = # votes for wrong class



Bagging(Bootstrap Aggregation) ... v
Train: B T =0

T= 15 ——> 2 => |

for t in range(T): Tty = 0]

* create bootstrap sample X of size'n >
from training data

* (Jc\( _
h ()= 2 L( "0y



Fest Bagging: motivating example =3
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test Bagging: motivating example t==3
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Outline for October 20

e Random forests



Random Forests

ldea: choose a different subset of features for
every classifier t

Typically use decision stumps (depth 1)

Goal: decorrelate models

In practice: choose sqrt(p) features
— Without replacement for each model

— Every model: data points and features chosen
independently




Random Forests

Idea: choose a different @;ures for
)

every classifier t

Typically use dec:s:on%uma@
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Outline for October 20

e AdaBoost
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