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Admin

• Office hours next week:
–Monday 9:45-11am
–Monday 4:30-6pm

• Lab 5 due October 20



Outline for October 16

• Maximum Likelihood Estimation (MLE) in 
other fields

• Recap handouts and logistic regression so far

• Regularization

• Multi-class logistic regression
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MLE in other fields

1. Chemistry

2. Physics

3. Biology

4. Economics



MLE in my own research

• Known: DNA data from multiple individuals
• Unknown: tree of relationships between the individuals
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Stochastic Gradient Descent for 
Logistic Regression (binary classification)

set w = 0 vector
while cost J(w) still changing:

shuffle data points
for i = 1…n:

w <- w – alpha(derivative of J(w) wrt xi)
store J(w)



3 important pieces to SGD

• Hypothesis function (prediction)
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3 important pieces to SGD

• Hypothesis function (prediction)

• Cost function (want to minimize)

• Gradient of cost wrt single data point xi





Handout 9



Lab 5 intro



w0=-5, w1=1 hw(x) = 1/(1+e^(5-x))

Graph made with FooPlot



w0=-10, w1=2 hw(x) = 1/(1+e^(10-2x))

Graph made with FooPlot



w0=-15, w1=3 hw(x) = 1/(1+e^(15-3x))

Graph made with FooPlot



w0=-100, w1=20 hw(x) = 1/(1+e^(100-20x))

Graph made with FooPlot



Lab 5 intro
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Adapted from slide by Jessica Wu
[example by Andrew Ng] 
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Generalization error
• Example: price vs. size (i.e. of a house or car)

underfitting
(high bias)

Structural error:
Hypothesis space cannot model 
true relationship

-More data doesn’t help
-Need a more flexible model

correct fit overfitting 
(high variance) 

Estimation (approximation) error:
Hypothesis space can model true 
relationship, BUT hard to identify 
correct model due to large hypothesis 
space, small n, or noise 
-Reduce hypothesis space
-Add more data 

Adapted from slide by Jessica Wu
[example by Andrew Ng] 



Regularization

• we have a limited # of training examples (n<p), or 
• we want to automatically control the complexity of the 

learned hypothesis? 

What if ... 

Slide by Jessica Wu



Regularization

• we have a limited # of training examples (n<p), or 
• we want to automatically control the complexity of the 

learned hypothesis? 

• if large weights, small change in feature can result in large 
change in prediction 

• prevent giving too much weight to any one feature 

• might prefer zero weight for useless features 

What if ... 

Why prefer small weights? 

Idea: penalize large values of wj

Slide by Jessica Wu



Common Regularizers

L0 norm

Slide adapted from Jessica Wu

• Number of non-zero 
entries

• Minimizing L0 norm is 
NP hard
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Common Regularizers

L0 norm L1 norm L2 norm

Slide adapted from Jessica Wu

• Number of non-zero 
entries

• Minimizing L0 norm is 
NP hard

• Sum of magnitude of 
weights

• Not differentiable

• Sum of squared 
weights

• Differentiable



Adding Regularization to Logistic Regression



Adding Regularization to Logistic Regression



Outline for October 16

• Maximum Likelihood Estimation (MLE) in 
other fields

• Recap handouts and logistic regression so far

• Regularization

• Multi-class logistic regression

In “Sunday” video!


