SGD for Logistic Regression

 (work with your random partner during lab)Say we have $p=1$ and two training examples: $\left(x_{1}, y_{1}\right)=(3,0)$ and $\left(x_{2}, y_{2}\right)=(7,1)$, and we would like to fit a logistic model to this dataset.

1. Draw these two examples on a coordinate system and sketch a logistic function that would fit them (roughly). What is the optimal decision boundary? Does this help us uniquely determine \hat{w}_{0} and \hat{w}_{1} ?
2. Say in our SGD method, we choose to analyze $\left(x_{2}, y_{2}\right)$ first. Before starting SGD, we set $w_{0}=0$ and $w_{1}=0$. After analyzing $\left(x_{2}, y_{2}\right)$, what are w_{0} and w_{1} ? Choose $\alpha=0.1$. Plot the decision boundary on your graph above.
3. Next we consider $\left(x_{1}, y_{1}\right)$. What are w_{0} and w_{1} be after this second data point? Plot this decision boundary on your graph above. At this point we have finished one iteration of SGD.
