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Admin	
•  Office	hours	Friday	3-4:30pm	(in	lab)	
•  Project	proposal	was	due	last	night	

–  repos	and	feedback	coming	soon	

•  Lab	8	due	Sunday	Nov	17	
– check	in	during	lab	today	(Part	1	complete)	

•  Midterm	2:	Nov	21	(in-class)	
– pick	up	a	study	guide	
–  take	home	due	Tues	Nov	26	

•  Nov	28-29:	Thanksgiving	break!	



Project	Lab	Notebook	

•  As	you	as	you	receive	your	git	repo,	start	
creaSng	a	“lab	notebook”	in	your	README	

•  This	should	say	who	was	working,	what	date,	
how	long,	and	briefly	what	you	did		



Project	Deliverables	

•  Main	deliverable:	presentaSon	

•  On	git:	
– Lab	Notebook	
– Project	Code	
– PresentaSon	Slides	



Mid-semester	feedback	

•  Handouts	earlier	(more	Sme	to	go	over,	more	
check-ins	with	groups)	

•  TA	hours	are	not	always	convenient		

•  Opportunity	to	revise	mistakes	



Mid-semester	feedback	

•  Make	sure	others	are	not	confused	during	
worksheets	

•  Ask	and	answer	more	on	Piazza	
•  More	parScipaSon	and	quesSons	in	class	
•  Start	labs	earlier,	go	to	office	hours	more	
•  Do	extensions	and	readings	



Outline	for	November	14	
	
•  Finish	fully	connected	neural	networks	

•  ConvoluSonal	neural	networks	

•  (if	Sme)	BackpropagaSon	
	
	

•  Next	week:	review	



Outline	for	November	14	
	
•  Finish	fully	connected	neural	networks	

•  ConvoluSonal	neural	networks	

•  (if	Sme)	BackpropagaSon	
	
	



What	was	this	breakthrough	in	deep	learning?	

2006: Hinton and Salakhutdinov  
make a break-through in 

initializing deep learning networks 

Images	on	next	slides	from	
Hinton	&	Salakhutdinov	(2006)	



Goal:	find	a	funcSon	between	input	and	output	
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First	idea:	one	hidden	layer	
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Second	idea:	more	hidden	layers	(“deep”	learning)	
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Detour	to	autoencoders	
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Use	unsupervised	pre-training	to	find	a	funcSon	
from	the	input	to	itself	
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sometimes comical) but nowhere near 
as good as a smooth human translation. 
“Deep learning will have a chance to do 
something much better than the cur-
rent practice here,” says crowd-sourcing 
expert Luis von Ahn, whose company 
Duolingo, based in Pittsburgh, Penn-
sylvania, relies on humans, not com-
puters, to translate text. “The one thing 
everyone agrees on is that it’s time to try 
something different.” 

DEEP SCIENCE
In the meantime, deep learning has 
been proving useful for a variety of 
scientific tasks. “Deep nets are really 
good at finding patterns in data sets,” 
says Hinton. In 2012, the pharmaceuti-
cal company Merck offered a prize to 
whoever could beat its best programs 
for helping to predict useful drug can-
didates. The task was to trawl through 
database entries on more than 30,000 
small molecules, each of which had 
thousands of numerical chemical-prop-
erty descriptors, and to try to predict 
how each one acted on 15 different tar-
get molecules. Dahl and his colleagues 
won $22,000 with a deep-learning sys-
tem. “We improved on Merck’s baseline 
by about 15%,” he says.

Biologists and computational 
researchers including Sebastian Seung 
of the Massachusetts Institute of Tech-
nology in Cambridge are using deep 
learning to help them to analyse three-
dimensional images of brain slices. Such 
images contain a tangle of lines that rep-
resent the connections between neu-
rons; these need to be identified so they can be 
mapped and counted. In the past, undergradu-
ates have been enlisted to trace out the lines, 
but automating the process is the only way to 
deal with the billions of connections that are 
expected to turn up as such projects continue. 
Deep learning seems to be the best way to auto-
mate. Seung is currently using a deep-learning 
program to map neurons in a large chunk of the 
retina, then forwarding the results to be proof-
read by volunteers in a crowd-sourced online 
game called EyeWire. 

William Stafford Noble, a computer scien-
tist at the University of Washington in Seattle, 
has used deep learning to teach a program to 
look at a string of amino acids and predict the 
structure of the resulting protein — whether 
various portions will form a helix or a loop, for 
example, or how easy it will be for a solvent to 
sneak into gaps in the structure. Noble has so 
far trained his program on one small data set, 
and over the coming months he will move on to 
the Protein Data Bank: a global repository that 
currently contains nearly 100,000 structures.

For computer scientists, deep learning 
could earn big profits: Dahl is thinking about 
start-up opportunities, and LeCun was hired 

last month to head a new AI department at 
Facebook. The technique holds the promise 
of practical success for AI. “Deep learning 
happens to have the property that if you feed it 
more data it gets better and better,” notes Ng. 
“Deep-learning algorithms aren’t the only ones 
like that, but they’re arguably the best — cer-

tainly the easiest. That’s why it has huge prom-
ise for the future.”

Not all researchers are so committed to the 
idea. Oren Etzioni, director of the Allen Insti-
tute for Artificial Intelligence in Seattle, which 
launched last September with the aim of devel-
oping AI, says he will not be using the brain for 
inspiration. “It’s like when we invented flight,” he 
says; the most successful designs for aeroplanes 

were not modelled on bird biology. Etzi-
oni’s specific goal is to invent a computer 
that, when given a stack of scanned text-
books, can pass standardized elemen-
tary-school science tests (ramping up 
eventually to pre-university exams). To 
pass the tests, a computer must be able 
to read and understand diagrams and 
text. How the Allen Institute will make 
that happen is undecided as yet — but for 
Etzioni, neural networks and deep learn-
ing are not at the top of the list. 

One competing idea is to rely on a 
computer that can reason on the basis 
of inputted facts, rather than trying to 
learn its own facts from scratch. So it 
might be programmed with assertions 
such as ‘all girls are people’. Then, when 
it is presented with a text that mentions 
a girl, the computer could deduce that 
the girl in question is a person. Thou-
sands, if not millions, of such facts are 
required to cover even ordinary, com-
mon-sense knowledge about the world. 
But it is roughly what went into IBM’s 
Watson computer, which famously 
won a match of the television game 
show Jeopardy against top human com-
petitors in 2011. Even so, IBM’s Watson 
Solutions has an experimental interest 
in deep learning for improving pattern 
recognition, says Rob High, chief tech-
nology officer for the company, which 
is based in Austin, Texas. 

Google, too, is hedging its bets. 
Although its latest advances in picture 
tagging are based on Hinton’s deep-
learning networks, it has other depart-
ments with a wider remit. In December 

2012, it hired futurist Ray Kurzweil to pursue 
various ways for computers to learn from 
experience — using techniques including but 
not limited to deep learning. Last May, Google 
acquired a quantum computer made by D-Wave 
in Burnaby, Canada (see Nature 498, 286–288; 
2013). This computer holds promise for non-
AI tasks such as difficult mathematical com-
putations — although it could, theoretically, be 
applied to deep learning.

Despite its successes, deep learning is still in 
its infancy. “It’s part of the future,” says Dahl. 
“In a way it’s amazing we’ve done so much with 
so little.” And, he adds, “we’ve barely begun”. ■

Nicola Jones is a freelance reporter based near 
Vancouver, Canada.
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Deep-learning neural networks use layers of increasingly 
complex rules to categorize complicated shapes such as faces.
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Layer 1: The 
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Layer 2: The 
computer learns to 
identify edges and 
simple shapes.

Layer 3: The computer 
learns to identify more 
complex shapes and 
objects.

Layer 4: The computer 
learns which shapes 
and objects can be used 
to define a human face.

“DEEP LEARNING HAS THE 
PROPERTY THAT IF YOU 

FEED IT MORE DATA, IT GETS 
BETTER AND BETTER.”
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Hidden	units	can	be	interpreted	as	edges	
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sometimes comical) but nowhere near 
as good as a smooth human translation. 
“Deep learning will have a chance to do 
something much better than the cur-
rent practice here,” says crowd-sourcing 
expert Luis von Ahn, whose company 
Duolingo, based in Pittsburgh, Penn-
sylvania, relies on humans, not com-
puters, to translate text. “The one thing 
everyone agrees on is that it’s time to try 
something different.” 

DEEP SCIENCE
In the meantime, deep learning has 
been proving useful for a variety of 
scientific tasks. “Deep nets are really 
good at finding patterns in data sets,” 
says Hinton. In 2012, the pharmaceuti-
cal company Merck offered a prize to 
whoever could beat its best programs 
for helping to predict useful drug can-
didates. The task was to trawl through 
database entries on more than 30,000 
small molecules, each of which had 
thousands of numerical chemical-prop-
erty descriptors, and to try to predict 
how each one acted on 15 different tar-
get molecules. Dahl and his colleagues 
won $22,000 with a deep-learning sys-
tem. “We improved on Merck’s baseline 
by about 15%,” he says.

Biologists and computational 
researchers including Sebastian Seung 
of the Massachusetts Institute of Tech-
nology in Cambridge are using deep 
learning to help them to analyse three-
dimensional images of brain slices. Such 
images contain a tangle of lines that rep-
resent the connections between neu-
rons; these need to be identified so they can be 
mapped and counted. In the past, undergradu-
ates have been enlisted to trace out the lines, 
but automating the process is the only way to 
deal with the billions of connections that are 
expected to turn up as such projects continue. 
Deep learning seems to be the best way to auto-
mate. Seung is currently using a deep-learning 
program to map neurons in a large chunk of the 
retina, then forwarding the results to be proof-
read by volunteers in a crowd-sourced online 
game called EyeWire. 

William Stafford Noble, a computer scien-
tist at the University of Washington in Seattle, 
has used deep learning to teach a program to 
look at a string of amino acids and predict the 
structure of the resulting protein — whether 
various portions will form a helix or a loop, for 
example, or how easy it will be for a solvent to 
sneak into gaps in the structure. Noble has so 
far trained his program on one small data set, 
and over the coming months he will move on to 
the Protein Data Bank: a global repository that 
currently contains nearly 100,000 structures.

For computer scientists, deep learning 
could earn big profits: Dahl is thinking about 
start-up opportunities, and LeCun was hired 

last month to head a new AI department at 
Facebook. The technique holds the promise 
of practical success for AI. “Deep learning 
happens to have the property that if you feed it 
more data it gets better and better,” notes Ng. 
“Deep-learning algorithms aren’t the only ones 
like that, but they’re arguably the best — cer-

tainly the easiest. That’s why it has huge prom-
ise for the future.”

Not all researchers are so committed to the 
idea. Oren Etzioni, director of the Allen Insti-
tute for Artificial Intelligence in Seattle, which 
launched last September with the aim of devel-
oping AI, says he will not be using the brain for 
inspiration. “It’s like when we invented flight,” he 
says; the most successful designs for aeroplanes 

were not modelled on bird biology. Etzi-
oni’s specific goal is to invent a computer 
that, when given a stack of scanned text-
books, can pass standardized elemen-
tary-school science tests (ramping up 
eventually to pre-university exams). To 
pass the tests, a computer must be able 
to read and understand diagrams and 
text. How the Allen Institute will make 
that happen is undecided as yet — but for 
Etzioni, neural networks and deep learn-
ing are not at the top of the list. 

One competing idea is to rely on a 
computer that can reason on the basis 
of inputted facts, rather than trying to 
learn its own facts from scratch. So it 
might be programmed with assertions 
such as ‘all girls are people’. Then, when 
it is presented with a text that mentions 
a girl, the computer could deduce that 
the girl in question is a person. Thou-
sands, if not millions, of such facts are 
required to cover even ordinary, com-
mon-sense knowledge about the world. 
But it is roughly what went into IBM’s 
Watson computer, which famously 
won a match of the television game 
show Jeopardy against top human com-
petitors in 2011. Even so, IBM’s Watson 
Solutions has an experimental interest 
in deep learning for improving pattern 
recognition, says Rob High, chief tech-
nology officer for the company, which 
is based in Austin, Texas. 

Google, too, is hedging its bets. 
Although its latest advances in picture 
tagging are based on Hinton’s deep-
learning networks, it has other depart-
ments with a wider remit. In December 

2012, it hired futurist Ray Kurzweil to pursue 
various ways for computers to learn from 
experience — using techniques including but 
not limited to deep learning. Last May, Google 
acquired a quantum computer made by D-Wave 
in Burnaby, Canada (see Nature 498, 286–288; 
2013). This computer holds promise for non-
AI tasks such as difficult mathematical com-
putations — although it could, theoretically, be 
applied to deep learning.

Despite its successes, deep learning is still in 
its infancy. “It’s part of the future,” says Dahl. 
“In a way it’s amazing we’ve done so much with 
so little.” And, he adds, “we’ve barely begun”. ■

Nicola Jones is a freelance reporter based near 
Vancouver, Canada.
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sometimes comical) but nowhere near 
as good as a smooth human translation. 
“Deep learning will have a chance to do 
something much better than the cur-
rent practice here,” says crowd-sourcing 
expert Luis von Ahn, whose company 
Duolingo, based in Pittsburgh, Penn-
sylvania, relies on humans, not com-
puters, to translate text. “The one thing 
everyone agrees on is that it’s time to try 
something different.” 

DEEP SCIENCE
In the meantime, deep learning has 
been proving useful for a variety of 
scientific tasks. “Deep nets are really 
good at finding patterns in data sets,” 
says Hinton. In 2012, the pharmaceuti-
cal company Merck offered a prize to 
whoever could beat its best programs 
for helping to predict useful drug can-
didates. The task was to trawl through 
database entries on more than 30,000 
small molecules, each of which had 
thousands of numerical chemical-prop-
erty descriptors, and to try to predict 
how each one acted on 15 different tar-
get molecules. Dahl and his colleagues 
won $22,000 with a deep-learning sys-
tem. “We improved on Merck’s baseline 
by about 15%,” he says.

Biologists and computational 
researchers including Sebastian Seung 
of the Massachusetts Institute of Tech-
nology in Cambridge are using deep 
learning to help them to analyse three-
dimensional images of brain slices. Such 
images contain a tangle of lines that rep-
resent the connections between neu-
rons; these need to be identified so they can be 
mapped and counted. In the past, undergradu-
ates have been enlisted to trace out the lines, 
but automating the process is the only way to 
deal with the billions of connections that are 
expected to turn up as such projects continue. 
Deep learning seems to be the best way to auto-
mate. Seung is currently using a deep-learning 
program to map neurons in a large chunk of the 
retina, then forwarding the results to be proof-
read by volunteers in a crowd-sourced online 
game called EyeWire. 

William Stafford Noble, a computer scien-
tist at the University of Washington in Seattle, 
has used deep learning to teach a program to 
look at a string of amino acids and predict the 
structure of the resulting protein — whether 
various portions will form a helix or a loop, for 
example, or how easy it will be for a solvent to 
sneak into gaps in the structure. Noble has so 
far trained his program on one small data set, 
and over the coming months he will move on to 
the Protein Data Bank: a global repository that 
currently contains nearly 100,000 structures.

For computer scientists, deep learning 
could earn big profits: Dahl is thinking about 
start-up opportunities, and LeCun was hired 

last month to head a new AI department at 
Facebook. The technique holds the promise 
of practical success for AI. “Deep learning 
happens to have the property that if you feed it 
more data it gets better and better,” notes Ng. 
“Deep-learning algorithms aren’t the only ones 
like that, but they’re arguably the best — cer-

tainly the easiest. That’s why it has huge prom-
ise for the future.”

Not all researchers are so committed to the 
idea. Oren Etzioni, director of the Allen Insti-
tute for Artificial Intelligence in Seattle, which 
launched last September with the aim of devel-
oping AI, says he will not be using the brain for 
inspiration. “It’s like when we invented flight,” he 
says; the most successful designs for aeroplanes 

were not modelled on bird biology. Etzi-
oni’s specific goal is to invent a computer 
that, when given a stack of scanned text-
books, can pass standardized elemen-
tary-school science tests (ramping up 
eventually to pre-university exams). To 
pass the tests, a computer must be able 
to read and understand diagrams and 
text. How the Allen Institute will make 
that happen is undecided as yet — but for 
Etzioni, neural networks and deep learn-
ing are not at the top of the list. 

One competing idea is to rely on a 
computer that can reason on the basis 
of inputted facts, rather than trying to 
learn its own facts from scratch. So it 
might be programmed with assertions 
such as ‘all girls are people’. Then, when 
it is presented with a text that mentions 
a girl, the computer could deduce that 
the girl in question is a person. Thou-
sands, if not millions, of such facts are 
required to cover even ordinary, com-
mon-sense knowledge about the world. 
But it is roughly what went into IBM’s 
Watson computer, which famously 
won a match of the television game 
show Jeopardy against top human com-
petitors in 2011. Even so, IBM’s Watson 
Solutions has an experimental interest 
in deep learning for improving pattern 
recognition, says Rob High, chief tech-
nology officer for the company, which 
is based in Austin, Texas. 

Google, too, is hedging its bets. 
Although its latest advances in picture 
tagging are based on Hinton’s deep-
learning networks, it has other depart-
ments with a wider remit. In December 

2012, it hired futurist Ray Kurzweil to pursue 
various ways for computers to learn from 
experience — using techniques including but 
not limited to deep learning. Last May, Google 
acquired a quantum computer made by D-Wave 
in Burnaby, Canada (see Nature 498, 286–288; 
2013). This computer holds promise for non-
AI tasks such as difficult mathematical com-
putations — although it could, theoretically, be 
applied to deep learning.

Despite its successes, deep learning is still in 
its infancy. “It’s part of the future,” says Dahl. 
“In a way it’s amazing we’ve done so much with 
so little.” And, he adds, “we’ve barely begun”. ■

Nicola Jones is a freelance reporter based near 
Vancouver, Canada.
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complex rules to categorize complicated shapes such as faces.
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sometimes comical) but nowhere near 
as good as a smooth human translation. 
“Deep learning will have a chance to do 
something much better than the cur-
rent practice here,” says crowd-sourcing 
expert Luis von Ahn, whose company 
Duolingo, based in Pittsburgh, Penn-
sylvania, relies on humans, not com-
puters, to translate text. “The one thing 
everyone agrees on is that it’s time to try 
something different.” 

DEEP SCIENCE
In the meantime, deep learning has 
been proving useful for a variety of 
scientific tasks. “Deep nets are really 
good at finding patterns in data sets,” 
says Hinton. In 2012, the pharmaceuti-
cal company Merck offered a prize to 
whoever could beat its best programs 
for helping to predict useful drug can-
didates. The task was to trawl through 
database entries on more than 30,000 
small molecules, each of which had 
thousands of numerical chemical-prop-
erty descriptors, and to try to predict 
how each one acted on 15 different tar-
get molecules. Dahl and his colleagues 
won $22,000 with a deep-learning sys-
tem. “We improved on Merck’s baseline 
by about 15%,” he says.

Biologists and computational 
researchers including Sebastian Seung 
of the Massachusetts Institute of Tech-
nology in Cambridge are using deep 
learning to help them to analyse three-
dimensional images of brain slices. Such 
images contain a tangle of lines that rep-
resent the connections between neu-
rons; these need to be identified so they can be 
mapped and counted. In the past, undergradu-
ates have been enlisted to trace out the lines, 
but automating the process is the only way to 
deal with the billions of connections that are 
expected to turn up as such projects continue. 
Deep learning seems to be the best way to auto-
mate. Seung is currently using a deep-learning 
program to map neurons in a large chunk of the 
retina, then forwarding the results to be proof-
read by volunteers in a crowd-sourced online 
game called EyeWire. 

William Stafford Noble, a computer scien-
tist at the University of Washington in Seattle, 
has used deep learning to teach a program to 
look at a string of amino acids and predict the 
structure of the resulting protein — whether 
various portions will form a helix or a loop, for 
example, or how easy it will be for a solvent to 
sneak into gaps in the structure. Noble has so 
far trained his program on one small data set, 
and over the coming months he will move on to 
the Protein Data Bank: a global repository that 
currently contains nearly 100,000 structures.

For computer scientists, deep learning 
could earn big profits: Dahl is thinking about 
start-up opportunities, and LeCun was hired 

last month to head a new AI department at 
Facebook. The technique holds the promise 
of practical success for AI. “Deep learning 
happens to have the property that if you feed it 
more data it gets better and better,” notes Ng. 
“Deep-learning algorithms aren’t the only ones 
like that, but they’re arguably the best — cer-

tainly the easiest. That’s why it has huge prom-
ise for the future.”

Not all researchers are so committed to the 
idea. Oren Etzioni, director of the Allen Insti-
tute for Artificial Intelligence in Seattle, which 
launched last September with the aim of devel-
oping AI, says he will not be using the brain for 
inspiration. “It’s like when we invented flight,” he 
says; the most successful designs for aeroplanes 

were not modelled on bird biology. Etzi-
oni’s specific goal is to invent a computer 
that, when given a stack of scanned text-
books, can pass standardized elemen-
tary-school science tests (ramping up 
eventually to pre-university exams). To 
pass the tests, a computer must be able 
to read and understand diagrams and 
text. How the Allen Institute will make 
that happen is undecided as yet — but for 
Etzioni, neural networks and deep learn-
ing are not at the top of the list. 

One competing idea is to rely on a 
computer that can reason on the basis 
of inputted facts, rather than trying to 
learn its own facts from scratch. So it 
might be programmed with assertions 
such as ‘all girls are people’. Then, when 
it is presented with a text that mentions 
a girl, the computer could deduce that 
the girl in question is a person. Thou-
sands, if not millions, of such facts are 
required to cover even ordinary, com-
mon-sense knowledge about the world. 
But it is roughly what went into IBM’s 
Watson computer, which famously 
won a match of the television game 
show Jeopardy against top human com-
petitors in 2011. Even so, IBM’s Watson 
Solutions has an experimental interest 
in deep learning for improving pattern 
recognition, says Rob High, chief tech-
nology officer for the company, which 
is based in Austin, Texas. 

Google, too, is hedging its bets. 
Although its latest advances in picture 
tagging are based on Hinton’s deep-
learning networks, it has other depart-
ments with a wider remit. In December 

2012, it hired futurist Ray Kurzweil to pursue 
various ways for computers to learn from 
experience — using techniques including but 
not limited to deep learning. Last May, Google 
acquired a quantum computer made by D-Wave 
in Burnaby, Canada (see Nature 498, 286–288; 
2013). This computer holds promise for non-
AI tasks such as difficult mathematical com-
putations — although it could, theoretically, be 
applied to deep learning.

Despite its successes, deep learning is still in 
its infancy. “It’s part of the future,” says Dahl. 
“In a way it’s amazing we’ve done so much with 
so little.” And, he adds, “we’ve barely begun”. ■

Nicola Jones is a freelance reporter based near 
Vancouver, Canada.
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complex rules to categorize complicated shapes such as faces.
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Deep-learning neural networks use layers of increasingly 
complex rules to categorize complicated shapes such as faces.

FACIAL RECOGNITION

Layer 1: The 
computer 
identifies pixels 
of light and dark. 

Layer 2: The 
computer learns to 
identify edges and 
simple shapes.

Layer 3: The computer 
learns to identify more 
complex shapes and 
objects.

Layer 4: The computer 
learns which shapes 
and objects can be used 
to define a human face.

“DEEP LEARNING HAS THE 
PROPERTY THAT IF YOU 

FEED IT MORE DATA, IT GETS 
BETTER AND BETTER.”
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Finally,	“fine-tune”	the	enSre	network!	



Takeaways	

•  As	the	number	of	parameters	grows,	a	non-convex	
funcSon	ohen	has	more	and	more	local	minima	

•  StarSng	at	a	“good”	point	is	crucial!	

Image:	O’Reilly	Media	
Convex	 Non-convex	



Takeaways	

•  Unsupervised	pre-training	uses	latent	structure	in	
the	data	as	a	starSng	point	for	weight	iniSalizaSon	

•  Aher	this	process,	the	network	is	“fine-tuned”	
•  In	pracSce	this	has	been	found	to	increase	
accuracy	on	specific	tasks	(which	could	be	
specified	aher	feature	learning)	



Recent	Example:	OpenAI’s	GPT-2	
	
•  “Language	Models	are	Unsupervised	MulStask	Learners”	

hfps://d4mucfpksywv.cloudfront.net/befer-language-models/language-models.pdf	

•  Decision	not	to	release	full	model:	hfps://openai.com/blog/befer-language-models/	

	

Takeaways	

•  Unsupervised	pre-training	uses	latent	structure	in	
the	data	as	a	starSng	point	for	weight	iniSalizaSon	

•  Aher	this	process,	the	network	is	“fine-tuned”	
•  In	pracSce	this	has	been	found	to	increase	
accuracy	on	specific	tasks	(which	could	be	
specified	aher	feature	learning)	



Weight	iniSalizaSon	
•  We	sSll	have	to	iniSalize	the	pre-training	

•  All	0’s	iniSalizaSon	is	bad!	Causes	nodes	to	
compute	the	same	outputs,	so	then	the	
weights	go	through	the	same	updates	during	
gradient	descent	

•  Need	asymmetry!		=>	usually	use	small	
random	values	



Mini-batches	
•  So	far	in	this	class,	we	have	considered	
stochas'c	gradient	descent,	where	one	data	
point	is	used	to	compute	the	gradient	and	
update	the	weights	

•  On	the	flipside	is	batch	gradient	descent,	
where	we	compute	the	gradient	with	respect	
to	all	the	data,	and	then	update	the	weights	

•  A	middle	ground	uses	mini-batches	of	
examples	before	updaSng	the	weights.	This	is	
the	approach	we	will	use	in	Lab	8.	



Lab	8	data	pre-processing	
•  It	is	helpful	to	have	our	data	be	zero-centered,	
so	we	will	subtract	off	the	mean	

•  It	is	also	helpful	to	have	the	features	be	on	the	
same	scale,	so	we	will	divide	by	the	standard	
deviaSon	

•  We	will	compute	the	mean	and	std	with	
respect	to	the	training	data,	then	apply	the	
same	transformaSon	to	all	datasets	



•  Input	is	now	itself	a	mulS-dimensional	array	

•  For	images,	ohen	the	shape	of	each	image	will	
be	(width,	height,	3)	for	RGB	channels	

•  Need	to	“fla3en”	or	“unravel”	for	fully	
connected	networks	

Lab	8	data	pre-processing	





•  The	output	of	the	final	fully	connected	layer	is	a	vector	
of	length	K	(number	of	classes)	

•  The	raw	scores	are	transformed	into	probabiliSes	using	
the	so5max	func'on:	(let	sk	be	the	score	for	class	k)	

•  Then	we	apply	cross-entropy	loss	to	these	probabiliSes	

K

Notes	about	scores	and	sohmax	



•  The	output	of	the	final	fully	connected	layer	is	a	vector	
of	length	K	(number	of	classes)	

•  The	raw	scores	are	transformed	into	probabiliSes	using	
the	so5max	func'on:	(let	sk	be	the	score	for	class	k)	

•  Then	we	apply	cross-entropy	loss	to	these	probabiliSes	

K

Notes	about	scores	and	sohmax	

Think	about	outside	of	class:	
•  Why	do	we	use	exp?	
•  Why	don’t	we	just	take	the	max	score?	



More	hidden	units	can	contribute	to	overfinng	

Image	from:	hfp://cs231n.github.io/neural-networks-1/	
	



However!	It	is	always	befer	to	use	a	more	
expressive	network	and	regularize	in	other	ways	

Image	from:	hfp://cs231n.github.io/neural-networks-1/	
	



•  Idea:	keep	a	neuron	acSve	with	some	probability	p,	
otherwise,	do	not	send	its	output	forward	to	the	next	layer	

One	regularizaSon	approach:	dropout	

Image	and	more	informaSon:	“Dropout:	A	Simple	Way	to	Prevent	
Neural	Networks	from	Overfinng”	

hfp://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf	
	



Outline	for	November	14	
	
•  Finish	fully	connected	neural	networks	

•  ConvoluSonal	neural	networks	

•  (if	Sme)	BackpropagaSon	
	
	



MoSvaSon	for	moving	away	from	FC	architectures		

•  For	a	32x32x3	image	(very	small!)	we	have	
p=3072	features	in	the	input	layer	

•  For	a	200x200x3	image,	we	would	have	
p=120,000!	doesn’t	scale	



MoSvaSon	for	moving	away	from	FC	architectures		

•  For	a	32x32x3	image	(very	small!)	we	have	
p=3072	features	in	the	input	layer	

•  For	a	200x200x3	image,	we	would	have	
p=120,000!	doesn’t	scale	

•  FC	networks	do	not	explicitly	account	for	the	
structure	of	an	image	and	the	correlaSons/	
relaSonships	between	nearby	pixels	



Idea:	3D	volumes	of	neurons	
•  Do	not	“flafen”	image,	keep	it	as	a	volume	with	

width,	height,	and	depth	



Idea:	3D	volumes	of	neurons	
•  Do	not	“flafen”	image,	keep	it	as	a	volume	with	

width,	height,	and	depth	
•  For	CIFAR-10,	we	would	have:	

–  Width=32,	 	Height=32,	 	Depth=3	

Image:	modified	from	Stanford	Course	CS231n:	hfp://cs231n.github.io/convoluSonal-networks/	
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32	



Idea:	3D	volumes	of	neurons	
•  Do	not	“flafen”	image,	keep	it	as	a	volume	with	

width,	height,	and	depth	
•  For	CIFAR-10,	we	would	have:	

–  Width=32,	 	Height=32,	 	Depth=3	

•  Each	layer	is	also	a	3	dimensional	volume	

Image:	modified	from	Stanford	Course	CS231n:	hfp://cs231n.github.io/convoluSonal-networks/	
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32	



Idea:	3D	volumes	of	neurons	
•  Do	not	“flafen”	image,	keep	it	as	a	volume	with	

width,	height,	and	depth	
•  For	CIFAR-10,	we	would	have:	

–  Width=32,	 	Height=32,	 	Depth=3	

•  Each	layer	is	also	a	3	dimensional	volume	
•  The	output	layer	is	1x1xC,	where	C	is	the	number	of	

classes	(10	for	CIFAR-10)	

Image:	modified	from	Stanford	Course	CS231n:	hfp://cs231n.github.io/convoluSonal-networks/	

3	

32	

32	

10	



Layers	of	a	ConvoluSonal	Neural	Network	(CNN)	

•  INPUT:	raw	pixels	of	a	color	image,	i.e.	32x32x3	

More	info:	hfp://cs231n.github.io/convoluSonal-networks/	



Layers	of	a	ConvoluSonal	Neural	Network	(CNN)	

•  INPUT:	raw	pixels	of	a	color	image,	i.e.	32x32x3	

•  CONV:	compute	informaSon	about	a	local	region	of	
the	image	using	a	filter.	Example:	12	filters	would	
product	a	volume	of	32x32x12	

More	info:	hfp://cs231n.github.io/convoluSonal-networks/	



Layers	of	a	ConvoluSonal	Neural	Network	(CNN)	

•  INPUT:	raw	pixels	of	a	color	image,	i.e.	32x32x3	

•  CONV:	compute	informaSon	about	a	local	region	of	
the	image	using	a	filter.	Example:	12	filters	would	
product	a	volume	of	32x32x12	

•  RELU:	apply	max(0,x),	same	volume	32x32x12	

More	info:	hfp://cs231n.github.io/convoluSonal-networks/	



Layers	of	a	ConvoluSonal	Neural	Network	(CNN)	

•  INPUT:	raw	pixels	of	a	color	image,	i.e.	32x32x3	

•  CONV:	compute	informaSon	about	a	local	region	of	
the	image	using	a	filter.	Example:	12	filters	would	
product	a	volume	of	32x32x12	

•  RELU:	apply	max(0,x),	same	volume	32x32x12	

•  POOL:	downsample,	i.e.	with	result	16x16x12	

More	info:	hfp://cs231n.github.io/convoluSonal-networks/	



Layers	of	a	ConvoluSonal	Neural	Network	(CNN)	

•  INPUT:	raw	pixels	of	a	color	image,	i.e.	32x32x3	

•  CONV:	compute	informaSon	about	a	local	region	of	
the	image	using	a	filter.	Example:	12	filters	would	
product	a	volume	of	32x32x12	

•  RELU:	apply	max(0,x),	same	volume	32x32x12	

•  POOL:	downsample,	i.e.	with	result	16x16x12	

•  FC	(fully-connected):	produce	probabiliSes	for	each	
class,	i.e.	volume	1x1x10	

More	info:	hfp://cs231n.github.io/convoluSonal-networks/	



Example	CNN	architecture		

Image:	Stanford	Course	CS231n:	hfp://cs231n.github.io/convoluSonal-networks/	



Example	CNN	architecture		

Image:	Stanford	Course	CS231n:	hfp://cs231n.github.io/convoluSonal-networks/	

ReLU	zeros	out	less	relevant	
informaSon,	highlighSng	an	interesSng	

feature	(i.e.	hood	of	car	here)	



Example	CNN	architecture		

Image:	Stanford	Course	CS231n:	hfp://cs231n.github.io/convoluSonal-networks/	

POOL	reduces	the	size	of	the	volume	
but	keeps	relevant	features	



VisualizaSon	of	an	enSre	network	

Image from MathWorks: https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html	



Idea:	local	“recepSve	field”	

•  A	convoluSonal	filter	(matrix)	can	pick	up	on	
local	features	in	the	original	image	through	an	
element-wise	dot-product	

•  Note	an	important	asymmetry:	we	will	look	at	
a	small	“patch”	of	the	image	relaSve	to	its	
width	and	height,	but	we	will	look	all	the	way	
through	the	depth!	



IntuiSon:	as	learning	progresses,	filters	become	
specialized	for	certain	types	of	features		

Images by: Adit Deshpande


Example:	
“Curve”	filter	



IntuiSon:	as	learning	progresses,	filters	become	
specialized	for	certain	types	of	features		

Images by: Adit Deshpande


Example:	
“Curve”	filter	

Say	we	apply	this	
filter	to	an	image	



Output	of	convoluSons	will	“light	up”	if	filter	
“matches”	recepSve	field,	but	not	otherwise	

Images by: Adit Deshpande


Output	to	next	layer:	
6600	



Output	of	convoluSons	will	“light	up”	if	filter	
“matches”	recepSve	field,	but	not	otherwise	

Images by: Adit Deshpande


Output	to	next	layer:	
6600	

Output	to	next	layer:	
0	



Examples	of	learned	filters	

Image:	Krizhevsky	et	al.	(2012)	hfps://papers.nips.cc/paper/4824-imagenet-classificaSon-with-deep-convoluSonal-neural-networks.pdf	



Math	behind	convoluSons	
(actually	cross-correlaSons!)	

hfps://en.wikipedia.org/wiki/Cross-correlaSon	
	





Image:	Stanford	Course	CS231n:	hfp://cs231n.github.io/convoluSonal-networks/	

?

In-class	exercise	
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Image:	Stanford	Course	CS231n:	hfp://cs231n.github.io/convoluSonal-networks/	



Pooling	

Image:	Stanford	Course	CS231n:	hfp://cs231n.github.io/convoluSonal-networks/	





Handout	18,	Q4	
(a) Which	steps	require	parameter	learning?	(out	of	

CONV,	RELU,	POOL,	FLATTEN,	FC)	

(b)  First	layer	params	

(c)  Second	layer	params	

(d)  Third	layer	params	

(e)  Total	#	params	
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CONV,	FC	

Handout	18,	Q4	



(a) Which	steps	require	parameter	learning?	(out	of	
CONV,	RELU,	POOL,	FLATTEN,	FC)	

(b)  First	layer	params	

(c)  Second	layer	params	

(d)  Third	layer	params	

(e)  Total	#	params	

CONV,	FC	

5*5*3*20	+	20	=	1520	

3*3*20*10	+	10	=	1810	

8*8*10*10	+	10	=	6410	

9740	

Handout	18,	Q4	



(a) Which	steps	require	parameter	learning?	(out	of	
CONV,	RELU,	POOL,	FLATTEN,	FC)	

(b)  First	layer	params	

(c)  Second	layer	params	

(d)  Third	layer	params	

(e)  Total	#	params	

If	we	had	a	FC	with	p1=100	and	p2=50,	we	would	have	312,860	
params	to	learn	(check	this	aher	class).	CNN	is	much	befer!	

CONV,	FC	

5*5*3*20	+	20	=	1520	

3*3*20*10	+	10	=	1810	

8*8*10*10	+	10	=	6410	

9740	

Handout	18,	Q4	



Image from Neural Network Zoo: http://www.asimovinstitute.org/neural-network-zoo/	
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