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Admin

• Lab 5 TODAY! 
–Office hours today 12:30—1:30pm (H110)

• Reading Quiz Thursday (Duame Section 13.1)

• Lab 6 due Friday Nov 1
–Checkpoint during lab on Thursday Oct 31 

(Part 1 and 2)



In lab Thursday

• Hand back the midterm
• Go over common issues
• Start Lab 6



Outline for October 22

• Evaluation metrics
– Confusion matrices revisited
– ROC curves
– Relationship to probabilistic methods

• Ensemble methods
– Bagging
– Random forests
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For now: assume binary classification task

• Transactions that indicate credit card fraud
• Detecting which scans show tumors
• Prenatal test for Down’s Syndrome
• Finding genes under natural selection
• Finding regions of the genome with high 

recombination rate (“hotspots”)



For now: assume binary classification task

• Transactions that indicate credit card fraud
• Detecting which scans show tumors
• Prenatal test for Down’s Syndrome
• Finding genes under natural selection
• Finding regions of the genome with high 

recombination rate (“hotspots”)

In all these examples, we are trying to find unusual 
items (“needle in a haystack”) -- we call these positives



Goals of Evaluation

• Think about what metrics are important for 
the problem at hand

• Compare different methods on the same 
problem

• Common set of tools that other 
researchers/users can understand



Back to Confusion Matrices…







Handout 12



• Precision: of all the “flagged” examples, which 
ones are actually relevant (i.e. positive)?

• Recall: of all the relevant results, which ones 
did I actually return?

Precision and Recall

Modified from Ameet Soni
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Precision and Recall

Modified from Ameet Soni

P=6 (number of 
images that are 

actually me)

• Precision = 
5/16

• Recall = 
5/6



Recap Confusion Matrices 
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Negative Positive

True positive
(TP)

False negative
(FN)

True negative
(TN)

False positive
(FP)

Modified from Jessica Wu
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Predicted class
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Negative Positive

True positive
(TP)

False negative
(FN)

“miss”

True negative
(TN)

False positive
(FP)

“false alarm”

N (total number of true negatives)

P (total number of true positives)

N* (what we said 
was negative)

P* (what we said was 
positive “flagged”)

Modified from Jessica Wu
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Recap Confusion Matrices 

True 
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Predicted class

Negative

Positive

Negative Positive

True positive
(TP)

False negative
(FN)

“miss”

True negative
(TN)

False positive
(FP)

“false alarm”

Modified from Jessica Wu

Accuracy = 1-Error:

(TN+TP)/(TN+FP+FN+TP)

= (TN+TP)/(N+P)

N

P
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Recap Confusion Matrices 
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Modified from Jessica Wu

Precision:

TP/(FP+TP) = TP/P*
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Recap Confusion Matrices 

True 
class

Predicted class

Negative

Positive

Negative Positive

True positive
(TP)

False negative
(FN)

“miss”

True negative
(TN)

False positive
(FP)

“false alarm”

N

P

N* P*

Modified from Jessica Wu

False Positive Rate:

FP/(TN+FP) = FP/N



ROC curve (Receiver Operating Characteristic)

Modified from Ameet Soni

Random 
Guessing 

Predict all 
positives

Predict all 
negatives



ROC curve example: comparing methods

Example of a ROC curve from my research
Chan, Perrone, Spence, Jenkins, Mathieson, Song

AUC (area under the curve)
is a good overall metric



How to get a ROC curve for probabilistic methods?

• Usually we use 0.5 as a threshold for binary 
classification

• Vary the threshold!  (i.e. choose 0.25)

– P(y=1 | x) > 0.25 => classify as 1 (positive)
– P(y=1 | x) <= 0.25 => classify as 0 (negative)



Outline for October 22

• Evaluation metrics
– Confusion matrices revisited
– ROC curves
– Relationship to probabilistic methods

• Ensemble methods
– Bagging
– Random forests



Quiz: recap bias and variance

Label each picture with variance (high or low) and bias (high or low)

Example from Ameet Soni



Quiz: recap bias and variance

Label each picture with variance (high or low) and bias (high or low)

Example from Ameet Soni

Variance: low
Bias: high



Quiz: recap bias and variance

Label each picture with variance (high or low) and bias (high or low)

Example from Ameet Soni

Variance: low
Bias: high

Variance: high
Bias: high



Quiz: recap bias and variance

Label each picture with variance (high or low) and bias (high or low)

Example from Ameet Soni

Variance: low
Bias: high

Variance: high
Bias: high

Variance: high
Bias: low



Quiz: recap bias and variance

Label each picture with variance (high or low) and bias (high or low)

Example from Ameet Soni

Variance: low
Bias: high

Variance: high
Bias: high

Variance: high
Bias: low

This is the type of classifier 
we want to average! 



Ensemble Idea
• Average the results from several models with 

high variance and low bias
– Important that models be diverse (don’t want 

them to be wrong in the same ways)

• If n observations each have variance s2, then 
the mean of the observations has variance 
s2/n (reduce variance by averaging!)



Learning Theory
Let H be the hypothesis space

Modified from Ameet Soni



Learning Theory
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Learning Theory

Modified from Ameet Soni

Ensembles can address all 3!



Learning Theory

Figure from Tom Dietterich



Modified from Ameet Soni





For Ensembles




