Working with Likelihoods

(find and work with a partner)

1. Bernoulli Random Variable. Say we flip a weighted coin n times, and each time the probability of heads (1) is p, so the probability of tails (0) is (1 - p). Let y_i be the outcome of flip i. For example, if n = 10, we might observe these values:

$$\boldsymbol{y} = [0, 0, 1, 1, 0, 1, 0, 1, 0, 0]$$

In this case, the *likelihood* of p given this observed data is $L(p) = p^4(1-p)^6$, since we observe four 1's and six 0's. In general, we can write the likelihood as

$$L(p) = \prod_{i=1}^{n} p^{y_i} (1-p)^{1-y_i},$$

so that for each y_i , only one of y_i and $(1 - y_i)$ will be non-zero and contribute to the product. Note that $L(p | \mathbf{y})$ is a more proper way of writing this (i.e. given the data), but we often omit this conditional part.

(a) What is the log likelihood $\ell(p)$ for this setup? Simplify as much as possible.

(b) Our goal is to *maximize* the log likelihood. Take the derivative with respect to p and set it equal to 0. Solve for p – this becomes our MLE (maximum likelihood estimator), \hat{p} .

(c) For our concrete example above with n = 10, what is the MLE \hat{p} ? Does this match your intuition?