
CS 360: Machine Learning

Prof. Sara Mathieson
Fall 2019



Admin

• Roster is semi-finalized

• First lab today, may need to bring a computer if 
you’re on the waitlist and have never taken a CS 
course at Haverford

• Lab 1 due Tues night (next office hours Friday 3-
5pm) if you did NOT get a Piazza notification 
about Lab 1, email me ASAP



Outline for Sept 5• Reading quiz 1

• Introductions

• Style guidelines for Python

• Continue K-nearest neighbors

• Featurization (intro)

• If time: begin entropy and decision trees



Outline for Sept 5• Reading quiz 1

• Introductions

• Style guidelines for Python

• Continue K-nearest neighbors

• Featurization (intro)

• If time: begin entropy and decision trees



Reading Quiz 1
1) Generalization: ability to answer new questions 

related to the topic studied

2) No! If we look at the test data (either the features
or the labels), then any measurement of the 
performance of our algorithm becomes inaccurate

3) Multiclass classification

4) Regression



Outline for Sept 5• Reading quiz 1

• Introductions

• Style guidelines for Python

• Continue K-nearest neighbors

• Featurization (intro)

• If time: begin entropy and decision trees



Outline for Sept 5• Reading quiz 1

• Introductions

• Style guidelines for Python

• Continue K-nearest neighbors

• Featurization (intro)

• If time: begin entropy and decision trees



Python style
• Decompose code into natural functions
• Avoid global variables (sometimes useful)
• Include a file header with purpose, author, 

and date
• Include headers for each function
• No lines over 80 chars
• Variable names implicitly show type
• Include line breaks and comments!



Python style examples



Structure of main and �helper� functions

Main (driver)

Helper 
Function1

Helper 
Function

2

Helper
Function

3

Sub-
helper 

A

Sub-
helper

B

Sub-
helper

C



Structure of main and �helper� functions



Reminder: steps of top-down-design (TDD)



1) Design a high-level main function that captures the basic idea of 
the program.

Reminder: steps of top-down-design (TDD)



1) Design a high-level main function that captures the basic idea of 
the program.

2) As you're writing/designing main, think about which details can 
be abstracted into small tasks. Make names for these functions 
and write their signatures below main.

Reminder: steps of top-down-design (TDD)



1) Design a high-level main function that captures the basic idea of 
the program.

2) As you're writing/designing main, think about which details can 
be abstracted into small tasks. Make names for these functions 
and write their signatures below main.

3) “Stub” out the functions. This means that they should work and 
return the correct type so that your code runs, but they don�t do 
the correct task yet. For example, if a function should return a 
list, you can return []. Or if it returns a boolean, you can return 
False.

Reminder: steps of top-down-design (TDD)



1) Design a high-level main function that captures the basic idea of 
the program.

2) As you're writing/designing main, think about which details can 
be abstracted into small tasks. Make names for these functions 
and write their signatures below main.

3) “Stub” out the functions. This means that they should work and 
return the correct type so that your code runs, but they don�t do 
the correct task yet. For example, if a function should return a 
list, you can return []. Or if it returns a boolean, you can return 
False.

4) Iterate on your design until you have a working main and stubbed 
out functions. Then start implementing the functions, starting 
from the �bottom up�.

Reminder: steps of top-down-design (TDD)



Reasons to use TDD
• Creates code that is easier to implement, debug, 

modify, and extend

• Avoids going off in the wrong direction (i.e. 
implementing functions that are not useful or 
don�t serve the program)

• Creates code that is easier for you or someone 
else to read and understand later on



Outline for Sept 5• Reading quiz 1

• Introductions

• Style guidelines for Python

• Continue K-nearest neighbors

• Featurization (intro)

• If time: begin entropy and decision trees











K-nearest neighbors creates implicit decision boundaries

Figure 2.14 from ISL book, KNN with two classes (C=2), and K=3



Outline for Sept 5• Reading quiz 1

• Introductions

• Style guidelines for Python

• Continue K-nearest neighbors

• Featurization (intro)

• If time: begin entropy and decision trees



Terminology

• Features: feature names 
– i.e. shape

• Feature values: what values are possible 
– i.e. {circle, square, triangle}

• Feature vector: values for a particular example
– i.e. x = [x1, x2, x3, …, xp]



• Decision boundary: separates regions of the 
feature space that would be classified as positive 
or negative (or multiclass)

• Underfitting: “had the opportunity to learn 
something but didn’t” (Duame)

• Overfitting: memorized individual training 
examples (fit to noise) and can’t generalize

Terminology



Handout 2
(find and work with a partner)



Comparison of decision boundaries

Figure 2.16 from ISL book (dashed line is “ideal” boundary)



Comparison of decision boundaries

Figure 2.16 from ISL book (dashed line is “ideal” boundary)



Comparison of decision boundaries

Figure 2.16 from ISL book (dashed line is “ideal” boundary)

Overfitting Underfitting



Featurization (rule of thumb)

Haven’t discussed:
-normalization
-categorical variables on a spectrum

Duame, Chap 3



Lab 1 Notes






