
CS364: Computational Biology Handout 22

Ancestral Reconstruction Review

1. In the figure below, the “bottom-up” phase of Fitch’s algorithm has been completed. Perform the
“top-down” phase to assign a state to each internal vertex, and show where mutations have occurred
on the tree. What is the total mutation score?

2. In the figure below, the “bottom-up” phase has again been completed, but for Sankoff’s algorithm
with the scoring matrix σ. Perform the traceback phase to assign a state to each internal vertex, and
show where mutations have occurred on the tree. What is the total mutation score?

σ a b

a 0 2

b 1 0

3. What is the runtime of Fitch’s algorithm in terms of the number of samples n and the number of
character states k? What is the runtime of Sankoff’s algorithm?

4. Is there any way to relate Fitch’s algorithm and Sankoff’s algorithm? Is one a special case of the
other?
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Population Genetics Review

The diagram below shows five sequences (rows), with mutations marked in orange X’s.

1. What is n (the number of sequences)? What is S (the number of segregating sites)?

2. Compute the site frequency spectrum: ξi = number of sites with i copies of the mutant/derived
allele, for i = 1, · · · , n− 1.

3. Compute the folded site frequency spectrum: ηi = number of sites with a i / (n− i) split (don’t know
ancestral vs. derived) for i = 1, · · · , bn/2c.

4. Using the folded site frequency spectrum, compute π:

π =
1(
n
2

) bn/2c∑
i=1

i(n− i)ηi

5. Putting this all together, compute Tajima’s d = π − S/a1 where a1 =
∑n−1

i=1
1
i .

6. Is d positive, negative, or zero? What could this indicate about the data?
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Viterbi Algorithm Review

Suppose we have an HMM with K = 2 hidden states representing two weighted coins (coin 1 and coin 2).
Our emissions are represented as the observed outcomes (H or T ) of coin tosses. At first, say we are given
the following transition and emission probabilities:(

a11 = 1
2 a12 = 1

2

a21 = 1
5 a22 = 4

5

)
and

(
e1(H) = 2

3 e1(T ) = 1
3

e2(H) = 1
4 e2(T ) = 3

4

)
Note that the rows sum to 1. Also say we are given the initial state probabilities π1 = 1

2 and π2 = 1
2 . Now

we want to find the most likely path (Viterbi path) of hidden states for a given dataset using dynamic
programming. Let Vk(i) be the probability of the most probable path that ends in hidden state k at
position i in the data. We will initialize the Viterbi recursive data structure with:

Vk(1) = πk · ek(x1)

And fill in each subsequent column using the previous column:

Vk(i) = ek(xi) ·max
l
{Vl(i− 1) · alk}

1. Given the observed sequence ~x = (H,T,H) and the probabilities above, fill in the table for V below,
then use backpointers to find the most likely sequence of hidden states.

H T H

1

2

2. Now suppose we have the opposite information - we are given the hidden state sequence ~z and want
to estimate the probabilities. What are the new transition and emission probabilities akl and ek(b)?

hidden state sequence ~z 2 1 2 1 1 1 2 2 2 2 2 2 2 2 1 2 2

observed sequence ~x T H H H T H T T H T T T T H H T T
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