Example: let both the emitted sequence \vec{x} and the hidden state sequence \vec{z} be known, but the transition and emission parameters be unknown. Let K = 2 and B = 2, so two hidden states $\{0,1\}$ and two possible observations $\{0,1\}$. Let

$$\vec{z} = [1, 0, 0, 1, 0, 1, 1, 0, 0, 0]$$

 $\vec{x} = [0, 1, 0, 0, 1, 0, 1, 1, 1, 0]$

- 1. Warmup: what is L?
- 2. Let

 $A_{kl} = \#$ of transitions from $k \to l$ in the data

 $E_k(b) = \#$ of emissions of b from state k in the data

Fill in the tables below for A_{kl} (row: start state, col: end state) and $E_k(b)$ (row: hidden state, col: emitted state).

$$A$$
 $l = 0$
 $l = 1$
 $k = 0$
 $k = 0$
 $k = 0$
 $k = 1$
 $k = 1$

3. To estimate the transition probabilities a_{kl} and emission probabilities $e_k(b)$, we will divide each of the counts above by the sum of the counts in each row:

$$a_{kl} = \frac{A_{kl}}{\sum_{l'} A_{kl'}}$$
, $e_k(b) = \frac{E_k(b)}{\sum_{b'} E_k(b')}$

Use this idea to fill in the tables for a_{kl} and $e_k(b)$.

- 4. What could go wrong with this estimation procedure if we don't observe some transitions and/or emissions?
- 5. How could you estimate initial probabilities (π_k for each state k) as well?