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Outline

■ Finish coalescent theory

■ Application: Tajima’s D for natural selection

■ Begin: Markov models

Lab 7 *and* proposal due tonight!
Office hours moved to Tuesdays
 2:30-3:30pm in H110
Lab 8 (last lab) posted



Finish coalescent theory



Don’t choose the same 
parent for g-1 generations

Choose same parent 
in the gth generation 

Population size 2N=6, sample size n = 2

Coalescent derivation from 
the Wright-Fisher model

Probability two samples coalesce 
after g generations:

C = 4

[Geometric distribution]



■ This allows us to rewrite our geometric 
coalescent probability

■ as (drop the -1 since g is large):

Coalescent derivation from the Wright-Fisher model

■ We will make use of the Taylor series for 
e-x around x = 0:

■ We will only use the first 2 terms:

Created using WolframAlpha



Coalescent for n = 2

■ We let 1 coalescent unit = 2N generations, 
and let our new variable be t

■ We let Ti be a random variable representing 
the time when there are i lineages
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■ We let 1 coalescent unit = 2N generations, 
and let our new variable be t

■ We let Ti be a random variable representing 
the time when there are i lineages
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distribution with parameter 1
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Coalescent for n = 2

■ We let 1 coalescent unit = 2N generations, 
and let our new variable be t

■ We let Ti be a random variable representing 
the time when there are i lineages

■ For n=2, this gives us an exponential 
distribution with parameter 1

■ The expected time for 2 lineages to coalesce 
is 1 coalescent unit of time => 2N generations

A B

T2
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The Coalescent
■ The larger our sample size n, the more pairs 

we have that can coalesce right away

■ In general, the time when there are i 
lineages is also exponentially distributed 
with parameter i(i-1)/2 (i “choose” 2)
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The Coalescent
■ The larger our sample size n, the more pairs 

we have that can coalesce right away

■ In general, the time when there are i 
lineages is also exponentially distributed 
with parameter i(i-1)/2 (i “choose” 2)

■ Expected value (think: weighted average, 
mean)



Deviations from neutrality:
Tajima’s D



Tajima’s D
■ We often say a site/locus is “neutral” if it has no positive or negative effect on fitness

■ More generally, “neutral” means agreeing with our Wright-Fisher model assumptions 
(constant population size, mutations have no consequences, random mating, etc)

■ Deviations from neutrality could mean that any of these assumptions are wrong

■ We will focus on two of them: allowing variable population size and allowing mutations 
with different selective advantages/disadvantages

■ Tajima’s D (1989) is a test statistic that compares different measures of sequence 
diversity that should be the same under neutrality

■ If they are not the same, we can further investigate the causes



Expected values of S (number of segregating sites) and 
π (average pairwise heterozygosity)

■ For now we will consider a single site

■ Let μ be the per site, per generation mutation rate



Expected values of S (number of segregating sites) and 
π (average pairwise heterozygosity)

■ For now we will consider a single site

■ Let μ be the per site, per generation mutation rate

■ Considering two samples, the expected time to coalescence 
is 1 coalescent unit or 2N generations
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Expected values of S (number of segregating sites) and 
π (average pairwise heterozygosity)

■ For now we will consider a single site

■ Let μ be the per site, per generation mutation rate

■ Considering two samples, the expected time to coalescence 
is 1 coalescent unit or 2N generations

■ Therefore the expected number of mutations separating the 
two samples is
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2Nμ
mutations

2Nμ
mutations



Expected values of S (number of segregating sites) and 
π (average pairwise heterozygosity)

■ For E[S], we need to compute the total branch length
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Expected values of S (number of segregating sites) and 
π (average pairwise heterozygosity)

■ After we have the total branch length, we can multiple 
by 2Nμ, the rate of mutations per unit of coalescent 
time

■ We can simplify this to get an expression similar to the 
expected value for π
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Putting this together, we get Tajima’s d

■ We will consider lowercase d, whose expectation is E[d] = 0

■ Tajima’s (capital) D is defined as:

■ We will mainly focus on the sign of d so we’ll ignore the denominator



What do deviations from d=0 mean?

■ If d is close to 0, neutral expectations (probably) hold (i.e. constant population size, 
random mating, no natural selection

■ If d > 0, the pairwise heterozygosity is higher than we expect relative to the number 
of segregating sites => excess of middle frequency SNPs

■ If d < 0, the number of segregating sites is higher than we expect relative to the 
pairwise heterozygosity => excess of rare variation

• Bottleneck or population decline
• Population structure or isolation with migration

• Population growth
• Natural selection





Tajima’s D in practice



Example of Tajima’s D from the literature
African-descent
European-descent
Chinese-descent

• Why is Tajima’s D greater than 0?

• Hypothesis: bottleneck in 
European and Asian populations is 
still affecting patterns of variation

• Population structure is playing a 
role in African populations



Example of Tajima’s D from the literature

European-descent

African-descent

Chinese-descent

• Regions where Tajima’s D < 0, 
probably natural selection (could 
be random)



Example of Tajima’s D from the literature

European-descent

African-descent

Chinese-descent

• Extended regions of low D, 
could be strong selection

• This paper found several 
regions under selection in 
European and Chinese 
populations that are linked to 
drug metabolism



Example of Tajima’s D from the literature

Note: not our formulas!
But exactly the same idea/goal



Markov Chains



K Prüfer et al. Nature 000, 1-7 (2013) doi:10.1038/nature12886

HMM example from the literature (similar to Lab 8)



Conditional probability

■ Idea of conditional probability

■ Bayes’ Theorem







Markov Chains
■ Markov assumption: current state only depends on the previous state



Markov Chains
■ Markov assumption: current state only depends on the previous state

■ This allows us to simplify the probability of observing a Markov chain:



Markov Chains
■ Markov assumption: current state only depends on the previous state

■ This allows us to simplify the probability of observing a Markov chain:

■ Note the difference between the state diagram (right) and an 
observed state sequence
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Markov Chains
■ Markov assumption: current state only depends on the previous state

■ This allows us to simplify the probability of observing a Markov chain:

■ Note the difference between the state diagram (right) and an 
observed state sequence

½

¼¼

1 1

Note that the sum of 
outgoing probabilities 

should be 1 







Handout 19







Hidden Markov Models









Viterbi Algorithm




