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I Lab 7 *and* proposal due tonight!
OUtl ine Office hours moved to Tuesdays

2:30-3:30pm in H110
Lab 8 (last lab) posted

m Finish coalescent theory

m Application: Tajima’s D for natural selection

m Begin: Markov models



Finish coalescent theory




Coalescent derivation from
the Wright-Fisher model

Probability two samples coalesce
after g generations:

1\t 1
Pc(g) = (1 2N> SN
~

Don’t choose the same
parent for g-1 generations

Choose same parent
in the gt" generation

[Geometric distribution]

Population size 2N=6, sample size n = 2
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Coalescent derivation from the Wright-Fisher model

m We will make use of the Taylor series for m This allows us to rewrite our geometric
e* around x = 0: coalescent probability
e p— —_ a’/" _— _— o o o P — 1 T _
o1 31 Tl c(9) ( 2N> N
m We will only use the first 2 terms: m as (drop the -1 since g is large):

e ' ~1—r

Created using WolframAlpha




Coalescent forn = 2

m We let 1 coalescent unit = 2N generations,
and let our new variable be t

m Welet T; be a random variable representing
the time when there are i lineages




Coalescent forn = 2

m We let 1 coalescent unit = 2N generations,
and let our new variable be t

m Welet T; be a random variable representing
the time when there are i lineages

m For n=2, this gives us an exponential
distribution with parameter 1




Coalescent forn = 2

m We let 1 coalescent unit = 2N generations,
and let our new variable be t

m Welet T; be a random variable representing
the time when there are i lineages

m For n=2, this gives us an exponential
distribution with parameter 1

m The expected time for 2 lineages to coalesce
is 1 coalescent unit of time => 2N generations




The Coalescent

m The larger our sample size n, the more pairs
we have that can coalesce right away

m In general, the time when there are i

lineages is also exponentially distributed
with parameter i(i-1)/2 (i “choose” 2)




The Coalescent

m The larger our sample size n, the more pairs
we have that can coalesce right away

m In general, the time when there are i

lineages is also exponentially distributed
with parameter i(i-1)/2 (i “choose” 2)

m Expected value (think: weighted average,
mean)

[T = /O Oote)e(;)tdt _ é




Deviations from neutrality:
Tajima’s D




Tajima’'s D

m We often say a site/locus is “neutral” if it has no positive or negative effect on fithess

m More generally, “neutral” means agreeing with our Wright-Fisher model assumptions
(constant population size, mutations have no consequences, random mating, etc)

m Deviations from neutrality could mean that any of these assumptions are wrong

m  We will focus on two of them: allowing variable population size and allowing mutations
with different selective advantages/disadvantages

m Tajima’s D (1989) is a test statistic that compares different measures of sequence
diversity that should be the same under neutrality

m If they are not the same, we can further investigate the causes




Expected values of S (number of segregating sites) and
7 (average pairwise heterozygosity)

m For now we will consider a single site

m Letu be the per site, per generation mutation rate




Expected values of S (number of segregating sites) and
7 (average pairwise heterozygosity)

m For now we will consider a single site
m Letu be the per site, per generation mutation rate

m Considering two samples, the expected time to coalescence
is 1 coalescent unit or 2N generations

> T




Expected values of S (number of segregating sites) and
7 (average pairwise heterozygosity)

m For now we will consider a single site

m Letu be the per site, per generation mutation rate 2Nu

mutations

2Nu

m Considering two samples, the expected time to coalescence tations

is 1 coalescent unit or 2N generations

m Therefore the expected number of mutations separating the
two samples is

Elr]| =4Npu =146




Expected values of S (number of segregating sites) and
7 (average pairwise heterozygosity)

m For E[S], we need to compute the total branch length

Tiota1 = total length of all branches in the tree

E[Ttotal] — Z E[Tz] '

1=n




Expected values of S (number of segregating sites) and
7 (average pairwise heterozygosity)

m After we have the total branch length, we can multiple
by 2Nu, the rate of mutations per unit of coalescent
time

E|S| = E[Tiotall - (2N p)

m We can simplify this to get an expression similar to the
expected value for &

E[S]=4Np - a1 = 6aq




Putting this together, we get Tajima’s d

m We will consider lowercase d, whose expectation is E[d] = 0O

d=7T—S/CL1

m Tajima’s (capital) D is defined as:

_ d
\/Var(d)

D

m  We will mainly focus on the sign of d so we’ll ighore the denominator




What do deviations from d=0 mean?”?

If d is close to O, neutral expectations (probably) hold (i.e. constant population size,
random mating, no natural selection

If d > O, the pairwise heterozygosity is higher than we expect relative to the number
of segregating sites => excess of middle frequency SNPs

* Bottleneck or population decline
* Population structure or isolation with migration

If d < O, the number of segregating sites is higher than we expect relative to the
pairwise heterozygosity => excess of rare variation

* Population growth
 Natural selection






Tajima’s D In practice




I Example of Tajima’s D from the literature

Genomic regions exhibiting positive selection
identified from dense genotype data

Christopher S. Carlson,’-® Daryl ]. Thomas,? Michael A. Eberle," Johanna E. Swanson,’
Robert J. Livingston,' Mark J. Rieder," and Deborah A. Nickerson'

"Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7730, USA; ?Center for Biomolecular
Science and Engineering, University of California, Santa Cruz, California 95064-1099, USA

 Why is Tajima’s D greater than 0?

* Hypothesis: bottleneck in
European and Asian populations is
still affecting patterns of variation

* Population structure is playing a
role in African populations
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Figure 2. A probability density plot of the distribution of Tajima’s D in
the sliding windows is shown for each population. All three distributions
depart significantly from a normal distribution, most noticeably in the
heavy tail at low values in each population.




I Example of Tajima’s D from the literature

Genomic regions exhibiting positive selection
identified from dense genotype data

Christopher S. Carlson,’-® Daryl ]. Thomas,? Michael A. Eberle," Johanna E. Swanson,’
Robert |. Livingston,' Mark . Rieder,’ and Deborah A. Nickerson'

"Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7730, USA; ?Center for Biomolecular
Science and Engineering, University of California, Santa Cruz, California 95064-1099, USA

* Regions where Tajima’s D < O,
probably natural selection (could
be random)

Base Position 10000000 | 20000000 | 30000000 | 40000000 |
3.67085 _ Perlegen 1371 population
European-descent
Tajimas D ED
-2.26402 _
3.48614 _ Perlegen 1372 population
African-descent
Tajimas D AD
-1.56256
3.99792 _ Perlegen 1373 population
Chinese-descent
Tajimas D XD \
-2.41197
A

Figure 3. Tajima’s D in 100-kbp shdmg windows with 10-kbp steps is shown across the first 50
megabases of chromosome 1. Several CRTRs are visible, including a region near 35M in the ED
population containing CLSPN (large blue arrowhead) and a region near 41M in the AD population
spanning CTPS, FLJ23878, and SCMHT (large green arrowhead). CRTRs at the less stringent 5% level are
also indicated in the ED population as small blue arrowheads and in the XD population as small red
arrowheads.




I Example of Tajima’s D from the literature

Genomic regions exhibiting positive selection
identified from dense genotype data

Christopher S. Carlson,’-® Daryl ]. Thomas,? Michael A. Eberle," Johanna E. Swanson,’
Robert |. Livingston,' Mark . Rieder,’ and Deborah A. Nickerson'

"Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7730, USA; ?Center for Biomolecular
Science and Engineering, University of California, Santa Cruz, California 95064-1099, USA

* Extended regions of low D,
could be strong selection

* This paper found several
regions under selection in
European and Chinese
populations that are linked to
drug metabolism

{zl
2

Tajima’s D ED

QBTaiima’s D XD

Base Position| 35606606| 55560060| 36000066| 36506000| 37006006|
Ferlegen 1372 population
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I Example of Tajima’s D from the literature

Genomic regions exhibiting positive selection
identified from dense genotype data

Christopher S. Carlson,’-® Daryl ]. Thomas,? Michael A. Eberle," Johanna E. Swanson,’
Robert J. Livingston,' Mark J. Rieder," and Deborah A. Nickerson'

"Department of Genome Sciences, University of Washington, Seattle, Washington 98195-7730, USA; ?Center for Biomolecular
Science and Engineering, University of California, Santa Cruz, California 95064-1099, USA

Note: not our formulas!
But exactly the same idea/goal

Nucleotide diversity analysis

There are several statistics that can be used to describe nucleotide
diversity, including 6, (equation 1), w (equation 2), and 6y (equa-
tion 3). These statistics can be calculated for a given resequenc-
ing data set by using the following parameters: n is the number
of chromosomes resequenced, Sn is the number of polymor-
phic sites observed, p; is the derived (nonancestral) allele fre-
quency of the ith SNP, and g; is the ancestral allele frequency of
the ith SNP.

Sn
05 = -1 (1)
1

Sn
n
=T 11_212171'%‘ (2)

n-1

Sn
n
O =——=>2p7 3)
i=1

There are many statistics that can evaluate departures from the
expected patterns of neutral variation. One of these is Tajima’s D
(Tajima 1989), equation 4:

m — 0

D= 4
\/ Var(m — 6,) *




Markov Chains




HMM example from the literature (similar to Lab 8)
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Time (scaled in units of 2uT)

K Prifer et al. Nature 000, 1-7 (2013) doi:10.1038/nature12886



Conditional probability

m |dea of conditional probability

P(A, B) = P(A)P(B|A)

m Bayes’ Theorem

P(A)P(B|A) = P(B)P(A|B)










Markov Chains

m Markov assumption: current state only depends on the previous state

P(Zz'|20721, T ,Zz'—l) — P(Zz'|27;—1)




Markov Chains

m Markov assumption: current state only depends on the previous state

P(Zz'|20,21, T ,Zz‘—l) — P(Zz'|zz'—1)

m This allows us to simplify the probability of observing a Markov chain:

L

P(Z(),Zl, Tt 7ZL) — P(ZO)HP(ZZ|ZZ—1)
1=1




Markov Chains

m Markov assumption: current state only depends on the previous state

P(Zz'|20,21, T ,Zz‘—l) — P(Zz'|zz'—1)

m This allows us to simplify the probability of observing a Markov chain:

L

P(Z(), K1y ,ZL) = P(Zo) H P(zz-|z7;_1)
1=1 15
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m Note the difference between the state diagram (right) and an ~

1 () Y1
observed state sequence \@ J




Markov Chains

m Markov assumption: current state only depends on the previous state

P(Zz'|20,21, T ,Zz‘—l) — P(Zz'lzi—l)

m This allows us to simplify the probability of observing a Markov chain:

Note that the sum of

I outgoing probabilities
should be 1
P(Z()a Z1y" " 7ZL) — P(ZO) H P(Z7,|zz—l)
1=1 )
N

Y4
m Note the difference between the state diagram (right) and an P .
observed state sequence 1 '\@ @:/ 1
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Hidden Markov Models
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Viterbl Algorithm







