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■ Deep learning in genetics

■ Coalescent Theory

■ Putting it all together: Tajima’s D for natural selection

Lab 7 posted
• Due next Tues
• Shorter coding
• Includes project proposal



Deep learning in population genetics



2013: Using machine learning to infer selection

SFS = [ 4, 1, 1, 1, 0, 0, 1 ]



2013: Using machine learning to infer selection



2013: Using machine learning to infer selection

Method: support vector machine (SVM)

Image from: “Towards Data Science”
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Multi-layer (deep) neural network will distill information
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sometimes comical) but nowhere near 
as good as a smooth human translation. 
“Deep learning will have a chance to do 
something much better than the cur-
rent practice here,” says crowd-sourcing 
expert Luis von Ahn, whose company 
Duolingo, based in Pittsburgh, Penn-
sylvania, relies on humans, not com-
puters, to translate text. “The one thing 
everyone agrees on is that it’s time to try 
something different.” 

DEEP SCIENCE
In the meantime, deep learning has 
been proving useful for a variety of 
scientific tasks. “Deep nets are really 
good at finding patterns in data sets,” 
says Hinton. In 2012, the pharmaceuti-
cal company Merck offered a prize to 
whoever could beat its best programs 
for helping to predict useful drug can-
didates. The task was to trawl through 
database entries on more than 30,000 
small molecules, each of which had 
thousands of numerical chemical-prop-
erty descriptors, and to try to predict 
how each one acted on 15 different tar-
get molecules. Dahl and his colleagues 
won $22,000 with a deep-learning sys-
tem. “We improved on Merck’s baseline 
by about 15%,” he says.

Biologists and computational 
researchers including Sebastian Seung 
of the Massachusetts Institute of Tech-
nology in Cambridge are using deep 
learning to help them to analyse three-
dimensional images of brain slices. Such 
images contain a tangle of lines that rep-
resent the connections between neu-
rons; these need to be identified so they can be 
mapped and counted. In the past, undergradu-
ates have been enlisted to trace out the lines, 
but automating the process is the only way to 
deal with the billions of connections that are 
expected to turn up as such projects continue. 
Deep learning seems to be the best way to auto-
mate. Seung is currently using a deep-learning 
program to map neurons in a large chunk of the 
retina, then forwarding the results to be proof-
read by volunteers in a crowd-sourced online 
game called EyeWire. 

William Stafford Noble, a computer scien-
tist at the University of Washington in Seattle, 
has used deep learning to teach a program to 
look at a string of amino acids and predict the 
structure of the resulting protein — whether 
various portions will form a helix or a loop, for 
example, or how easy it will be for a solvent to 
sneak into gaps in the structure. Noble has so 
far trained his program on one small data set, 
and over the coming months he will move on to 
the Protein Data Bank: a global repository that 
currently contains nearly 100,000 structures.

For computer scientists, deep learning 
could earn big profits: Dahl is thinking about 
start-up opportunities, and LeCun was hired 

last month to head a new AI department at 
Facebook. The technique holds the promise 
of practical success for AI. “Deep learning 
happens to have the property that if you feed it 
more data it gets better and better,” notes Ng. 
“Deep-learning algorithms aren’t the only ones 
like that, but they’re arguably the best — cer-

tainly the easiest. That’s why it has huge prom-
ise for the future.”

Not all researchers are so committed to the 
idea. Oren Etzioni, director of the Allen Insti-
tute for Artificial Intelligence in Seattle, which 
launched last September with the aim of devel-
oping AI, says he will not be using the brain for 
inspiration. “It’s like when we invented flight,” he 
says; the most successful designs for aeroplanes 

were not modelled on bird biology. Etzi-
oni’s specific goal is to invent a computer 
that, when given a stack of scanned text-
books, can pass standardized elemen-
tary-school science tests (ramping up 
eventually to pre-university exams). To 
pass the tests, a computer must be able 
to read and understand diagrams and 
text. How the Allen Institute will make 
that happen is undecided as yet — but for 
Etzioni, neural networks and deep learn-
ing are not at the top of the list. 

One competing idea is to rely on a 
computer that can reason on the basis 
of inputted facts, rather than trying to 
learn its own facts from scratch. So it 
might be programmed with assertions 
such as ‘all girls are people’. Then, when 
it is presented with a text that mentions 
a girl, the computer could deduce that 
the girl in question is a person. Thou-
sands, if not millions, of such facts are 
required to cover even ordinary, com-
mon-sense knowledge about the world. 
But it is roughly what went into IBM’s 
Watson computer, which famously 
won a match of the television game 
show Jeopardy against top human com-
petitors in 2011. Even so, IBM’s Watson 
Solutions has an experimental interest 
in deep learning for improving pattern 
recognition, says Rob High, chief tech-
nology officer for the company, which 
is based in Austin, Texas. 

Google, too, is hedging its bets. 
Although its latest advances in picture 
tagging are based on Hinton’s deep-
learning networks, it has other depart-
ments with a wider remit. In December 

2012, it hired futurist Ray Kurzweil to pursue 
various ways for computers to learn from 
experience — using techniques including but 
not limited to deep learning. Last May, Google 
acquired a quantum computer made by D-Wave 
in Burnaby, Canada (see Nature 498, 286–288; 
2013). This computer holds promise for non-
AI tasks such as difficult mathematical com-
putations — although it could, theoretically, be 
applied to deep learning.

Despite its successes, deep learning is still in 
its infancy. “It’s part of the future,” says Dahl. 
“In a way it’s amazing we’ve done so much with 
so little.” And, he adds, “we’ve barely begun”. ■

Nicola Jones is a freelance reporter based near 
Vancouver, Canada.
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Deep-learning neural networks use layers of increasingly 
complex rules to categorize complicated shapes such as faces.

FACIAL RECOGNITION

Layer 1: The 
computer 
identifies pixels 
of light and dark. 

Layer 2: The 
computer learns to 
identify edges and 
simple shapes.

Layer 3: The computer 
learns to identify more 
complex shapes and 
objects.

Layer 4: The computer 
learns which shapes 
and objects can be used 
to define a human face.

“DEEP LEARNING HAS THE 
PROPERTY THAT IF YOU 

FEED IT MORE DATA, IT GETS 
BETTER AND BETTER.”
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Image: Labeled Faces in the Wild (UMass) 



2016: evoNet – deep learning with summary statistics
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“Deep learning for population genetic inference”, PLOS Comp Bio, 2016 
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Training Data: simulated data under different modes of selection



Results: confusion matrices for natural selection
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Results: real Drosophila data

Drosophila 
from Zambia 
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Feature selection: “best” statistics via perturbation of the inputs



Can we do better? Convolutional neural networks (CNNs)

convolution + 
nonlinearity 

max pooling flatten

classification (softmax)

bird

sun

dog

cat

fully connected layersconvolution + pooling layers

Pbird

Psun

Pdog

Pcat

1. Need different summary statistics 
for each application

2. Computationally intensive

Motivation

Chan, Perrone, Spence, Jenkins, Mathieson, Song. “A Likelihood-Free Inference 
Framework for Population Genetic Data using Exchangeable Neural Networks”
NeurIPS, 2018, https://github.com/popgenmethods/defiNETti 

Flagel, Brandvain, Schrider. “The unreasonable effectiveness of convolutional 
neural networks in population genetic inference.”
Molecular biology and evolution, 2018

Figure: Adit Deshpande

https://github.com/popgenmethods/defiNETti
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Exchangeable Architecture
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Nonexchangeable, Patch Height = 7

Sara Mathieson

Impact of exchangeable architecture 



Sara Mathieson

Deep learning and CNN resources

• Deep learning tutorial

• Tensorflow CNN tutorial

• Tensorflow advanced 
quickstart

https://www.tensorflow.org/tutorials/images/cnn

https://www.tensorflow.org/tutorials/quickstart/advanced

http://ufldl.stanford.edu/tutorial/

https://www.tensorflow.org/tutorials/images/cnn
https://www.tensorflow.org/tutorials/quickstart/advanced
http://ufldl.stanford.edu/tutorial/


Brief detour to Hardy-Weinberg
+ recap expected value



Discrete probability distribution
■ Let X be a random variable that can take on values x1, x2, …, xk
■ Example: a die that can take on values 1,2,3,4,5,6

■ If we rolled the die many times and took the average, we would have an estimate of 
the expected value

■ Let pi = the probability of observing value xi
■ Example: p1=0, p2=1/6, p3=1/6, p4=1/6, p5=1/6, p6 = 1/3

■ We should check that the sum of the probabilities of all possible values is 1

■ Compute expectation:



Hardy-Weinberg expectations
■ If we have two alleles, A and a, then each individual can have genotype AA, Aa, or aa

■ We say that AA and aa are homozygous and Aa is heterozygous

■ If the genotype at this locus (site) is responsibly for a Mendelian (think: binary) phenotype 
and A is dominant, then AA and Aa will have the same phenotype

■ In that case we would call aa recessive

■ If aa is disease causing or deleterious, this can reduce the frequency of a through selection

■ If most alleles either become fixed or die out, that means eventually everyone will either be aa 
or AA.  This is called the loss of heterozygosity 



Wright-Fisher Model (discrete)
and Coalescent (continuous)







Constant population size: 2N

Generations 
back in time

Wright-Fisher Model

• Imagine each child 
choosing their parent at 
random

• When two descendants 
choose the same 
parent, they “coalesce”

• From then on, they 
have the same ancestry 
and follow the same 
lineage

g0

g1

gT



Constant population size: 2N

Generations 
back in time

Wright-Fisher Model
g0

g1

gT

• First: model variation 
but not any new 
mutations

• Blue is the “A” allele

• White is the “a” allele



Constant population size: 2N

Generations 
back in time

Wright-Fisher Model
g0

g1

gT

• Viewed another way, 
track which individuals 
pass on genetic material 
that is observable at the 
present

• Dark green: contributes 
to genetic material at 
present

• Light green: does not 
contribute genetic 
material to the present



Constant population size: 2N

Generations 
back in time

Wright-Fisher Model
g0

g1

gT

• Eventually, all the 
present-day individuals 
will “coalesce” and 
share one common 
ancestor

• Common ancestor in 
red



Constant population size: 2N

Generations 
back in time

Wright-Fisher Model
g0

g1

gT

• Eventually, all the 
present-day individuals 
will “coalesce” and 
share one common 
ancestor

• Common ancestor in 
red

Looks like a tree!



Wright-Fisher model

■ Wright-Fisher model of evolution; discrete time (measured in generations)

■ Assumptions (for now):
– constant population size
– random mating
– the two chromosomes for each individual choose their parents independently
– mutations are neutral (i.e. not selectively advantageous or deleterious)

■ Genetic drift: changes in allele frequencies are due to random chance, not 
selection



• All neutral genetic variation will eventually die out or become fixed in the 
population (question: so why do we observe variation?)

• The probability of fixation for a new mutation is 1/(2N) where N is the 
population size

• In general the fixation probability is f0, the initial frequency of the 
mutation in generation 0

• Question: how is genetic drift affected by the population size N?  What 
consequences might this affect have?

Intermediate frequencies can persist for many generations, selection, admixture, any deviations from neutrality   

The lower the population size, the greater the chance new mutations will fix, even weakly deleterious ones.
This can lead to what would typically be rare traits reaching high frequency.

Wright-Fisher model



Constant population size: 2N

Generations 
back in time

Wright-Fisher Model
g0

g1

gT

Question: how long will it 
take two randomly 
chosen individuals to 
coalesce (i.e. find a 
common ancestor?)
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Constant population size: 2N

Generations 
back in time

Wright-Fisher Model
g0

g1

gT

Question: how long will it 
take two randomly 
chosen individuals to 
coalesce (i.e. find a 
common ancestor?)

Probability they do choose 
the same parent:
1/(2N)



Coalescent Theory

■ The Coalescent (usually attributed to Kingman, 1982) is a mathematical model for the evolution 
and genealogical history of a population

■ The Coalescent can be derived from the Wright-Fisher model, but also several other discrete-time 
models (i.e. the Moran model)

■ We assume the population size N is large

■ We rescale time where 1 unit in coalescent time = 2N generations

■ Rescaling time allows us to work with numbers that are on order 1 (avoiding numerical issues 
that arise with very small numbers) and we also avoid a factor of 2N in every formula



Don’t choose the same 
parent for g-1 generations

Choose same parent 
in the gth generation 

Population size 2N=6, sample size n = 2

Coalescent derivation from 
the Wright-Fisher model

Probability two samples coalesce 
after g generations:

C = 4

[Geometric distribution]



■ This allows us to rewrite our geometric 
coalescent probability

■ as (drop the -1 since g is large):

Coalescent derivation from the Wright-Fisher model

■ We will make use of the Taylor series for 
e-x around x = 0:

■ We will only use the first 2 terms:

Created using WolframAlpha







Coalescent for n = 2

■ We let 1 coalescent unit = 2N generations, 
and let our new variable be t

■ We let Ti be a random variable representing 
the time when there are i lineages

A B

T2



Coalescent for n = 2

■ We let 1 coalescent unit = 2N generations, 
and let our new variable be t

■ We let Ti be a random variable representing 
the time when there are i lineages

■ For n=2, this gives us an exponential 
distribution with parameter 1

A B

T2



Coalescent for n = 2

■ We let 1 coalescent unit = 2N generations, 
and let our new variable be t

■ We let Ti be a random variable representing 
the time when there are i lineages

■ For n=2, this gives us an exponential 
distribution with parameter 1

■ The expected time for 2 lineages to coalesce 
is 1 coalescent unit of time => 2N generations

A B

T2



A B C D E
T5

T4

T3

T2

The Coalescent
■ The larger our sample size n, the more pairs 

we have that can coalesce right away

■ In general, the time when there are i 
lineages is also exponentially distributed 
with parameter i(i-1)/2 (i “choose” 2)
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The Coalescent
■ The larger our sample size n, the more pairs 

we have that can coalesce right away

■ In general, the time when there are i 
lineages is also exponentially distributed 
with parameter i(i-1)/2 (i “choose” 2)

■ Expected value (think: weighted average, 
mean)



Handout 18, pg 2






