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Lab 7 posted
-  Due next Tues
O Utl I n e e Shorter coding

* Includes project proposal

m Deep learning in genetics
m Coalescent Theory

m Putting it all together: Tajima’s D for natural selection



Deep learning in population genetics




Learning Natural Selection from the Site

2013: Using machine learning to infer selection |RiREEISESEEL

Roy Ronen, Nitin Udpa, Eran Halperin and Vineet Bafna

GENETICS September 1, 2013 vol. 195 no. 1 181-193;
https://doi.org/10.1534/genetics.113.152587
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Roy Ronen, Nitin Udpa, Eran Halperin and Vineet Bafna

GENETICS September 1, 2013 vol. 195 no. 1 181-193;
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2013: Using machine learning to infer selection

Method: support vector machine (SVM)
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Learning Natural Selection from the Site

Frequency Spectrum

Roy Ronen, Nitin Udpa, Eran Halperin and Vineet Bafna

GENETICS September 1, 2013 vol. 195 no. 1 181-193;
https://doi.org/10.1534/genetics.113.152587
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Image from: “Towards Data Science”



Multi-layer (deep) neural network will distill information
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Image: Labeled Faces in|the Wild (UMass)




2016: evoNet — deep learning with summary statistics
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“Deep learning for population genetic inference”, PLOS Comp Bio, 2016



2016: evoNet — deep learning with summary statistics
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Tramning Data: simulated data under different modes of selection
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Results: confusion matrices for natural selection

Predicted Class

AL
4 New Existing A
No selection mutation mutation Balancing
No selection 1.000 0.000 0.000 0.000
True< New mutation 0.978 0.007 0.000 0.015 I_a er b |a er
Class \ Eyisting mutation | 1-000 0.000 0.000 0.000 y y y
\Balancing 1.000 0.000 0.000 0.000 't Falnin g
Predicted Class
Random A
... . . 4 New Existing N
N t| a | |Zat 1ON No selection —mutation mutation Balancing
No selection 1.000 0.000 0.000 0.000
\Balancing 0.030 0.028 0.001 0.941




Results: real Drosophila data

Drosophila
from Zambia

Selection class

Number of regions

No selection
New mutation
Existing mutation
Balancing

1191
2572
429
637




Feature selection: “best” statistics via perturbation of the inputs

SFS, close: 2
LD, close: 5
IBS, mid: 1
IBS, mid: 3

IBS, close: 21
IBS, close: 22
IBS, close: 24
LD, far: 12

S, close
D, close
SFS, close: 1

IBS, far: 19
IBS, far: 20

IBS, far: 23 IBS, mid: 20

BET, close: 1 IBS. far: 2 IBS, far: 4
LD, close: 3 IBS, far: 3 IBS, far: 6
LD, close: 4 IBS, far: 21 IBS, far: 8
SFS, mid:1 IBS, far: 22 IBS, far: 9
D, far IBS, far: 30 IBS, far: 15
BET, far: 40 LD, far: 1 IBS, far: 16
H1 IBS, far: 17
IBS, far: 18 Notable none:
SFS, close: 3-50
SFS, mid: 2-50
LD, close: 16 SFS, far:2-50
LD mid: 6 BET, close: 2-16
Selection N2 BET, mid: all
LD, far: 6 BET far: 4-16
D, mid

H2




Can we do better? Convolutional neural networks (CNNs)

Motivation Flagel, Brandvain, Schrider. “The unreasonable effectiveness of convolutional
neural networks in population genetic inference.”
: - Molecular brology and evolution, 2018
1. Need different summary statistics
for each application Chan, Perrone, Spence, Jenkins, Mathieson, Song. “A Likelihood-Free Inference
Framework for Population Genetic Data using Exchangeable Neural Networks”
NeurlPS, 2018, https://github.com/popgenmethods/defiINETti

2. Computationally intensive
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Figure: Adit Deshpande


https://github.com/popgenmethods/defiNETti
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Impact of exchangeable architecture

Testing Accuracy for Human Recombination Maps
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Deep learning and CNN resources

http://ufldl.stanford.edu/tutorial/

Supervised Learning

e D eep | earn N g tuto q 3 | Welcome to the Deep Learning Tutorial! and Optimization

i ] . : . : Li R i
Description: This tutorial will teach you the main ideas of Unsupervised Feature inear Regression

Learning and Deep Learning. By working through it, you will also get to implement
several feature learning /deep learning algorithms, get to see them work for yourself,
and learn how to apply/adapt these ideas to new problems.

Logistic Regression

Vectorization
This tutorial assumes a basic knowledge of machine learning (specifically, familiarity Debugging: Gradient
with the ideas of supervised learning, logistic regression, gradient descent). If you are Checking
not familiar with these ideas, we suggest you go to this Machine Learning course and
complete sections II, III, IV (up to Logistic Regression) first. Softmax Regression

 Tensorflow advanced
quickstart

https://www.tensorflow.org/tutorials/quickstart/advanced

Sara Mathieson


https://www.tensorflow.org/tutorials/images/cnn
https://www.tensorflow.org/tutorials/quickstart/advanced
http://ufldl.stanford.edu/tutorial/

Brief detour to Hardy-Weinberg
+ recap expected value




Discrete probability distribution

m Let X be a random variable that can take on values x5, x5, ..., X,
m Example: a die that can take on values 1,2,3,4,5,6

m If we rolled the die many times and took the average, we would have an estimate of
the expected value

m Let p;, = the probability of observing value x;

m Example: p;=0, p,=1/6, p5=1/6, p4;=1/6, ps=1/6, ps = 1/3 )

m We should check that the sum of the probabilities of all possible values is 1 Zpi =1
1=1

k
m Compute expectation: E[X] = p1&1 + pao + - - - + ppZy = Zp’ixi
i=1

1 1 1
0-14+=(2+3+4+5)+=-6=4=
+ (2 +3+445)+ 3 3




Hardy-Weinberg expectations

m |f we have two alleles, A and a, then each individual can have genotype AA, Aa, or aa
m We say that AA and aa are homozygous and Aa is heterozygous

m If the genotype at this locus (site) is responsibly for a Mendelian (think: binary) phenotype
and A is dominant, then AA and Aa will have the same phenotype

m Inthat case we would call aa recessive
m If aa is disease causing or deleterious, this can reduce the frequency of a through selection

m [f most alleles either become fixed or die out, that means eventually everyone will either be aa
or AA. This is called the loss of heterozygosity




Wright-Fisher Model (discrete)
and Coalescent (continuous)










Wright-Fisher Model
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* Imagine each child
choosing their parent at
random

* When two descendants
choose the same
parent, they “coalesce”

Constant population size: 2N

 From then on, they
have the same ancestry
and follow the same
lineage
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Wright-Fisher Model

O
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Generations
back in time

e

* Viewed another way,
track which individuals
pass on genetic material
that is observable at the
present

* Dark green: contributes ‘
to genetic material at
present

* Light green: does not

contribute genetic Q
material to the present
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Wright-Fisher Model .
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* Eventually, all the
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Wright-Fisher model

m Wright-Fisher model of evolution; discrete time (measured in generations)

m Assumptions (for now):

— constant population size

- random mating

- the two chromosomes for each individual choose their parents independently
— mutations are neutral (i.e. not selectively advantageous or deleterious)

m Genetic drift: changes in allele frequencies are due to random chance, not
selection




Wright-Fisher model

* All neutral genetic variation will eventually die out or become fixed in the
population (question: so why do we observe variation?)

Intermediate frequencies can persist for many generations, selection, admixture, any deviations from neutrality

* The probability of fixation for a new mutation is 1/(2N) where N is the
population size

* In general the fixation probability is f,, the initial frequency of the
mutation in generation O

* Question: how is genetic drift affected by the population size N? What
consequences might this affect have?

The lower the population size, the greater the chance new mutations will fix, even weakly deleterious ones.
This can lead to what would typically be rare traits reaching high frequency.



Wright-Fisher Model

Generations
back in time

Question: how long will it
take two randomly
chosen individuals to
coalesce (i.e. find a
common ancestor?)
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Wright-Fisher Model

Generations
back in time

Question: how long will it
take two randomly
chosen individuals to
coalesce (i.e. find a
common ancestor?)

Probability they don’t
choose the same parent in

the previous generation:
1-1/(2N)
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Wright-Fisher Model
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Wright-Fisher Model

0 O

81

Generations
back in time

Question: how long will it
take two randomly
chosen individuals to
coalesce (i.e. find a
common ancestor?)

Probability they do choose
the same parent:
1/(2N)

O O
g O O O

Constant population size: 2N

_____________________________________________________________________________>




Coalescent Theory

The Coalescent (usually attributed to Kingman, 1982) is a mathematical model for the evolution
and genealogical history of a population

The Coalescent can be derived from the Wright-Fisher model, but also several other discrete-time
models (i.e. the Moran model)

We assume the population size N is large

We rescale time where 1 unit in coalescent time = 2N generations

Rescaling time allows us to work with numbers that are on order 1 (avoiding numerical issues
that arise with very small numbers) and we also avoid a factor of 2N in every formula



Coalescent derivation from
the Wright-Fisher model

Probability two samples coalesce
after g generations:

1\t 1
Pc(g) = (1 2N> SN
~

Don’t choose the same
parent for g-1 generations

Choose same parent
in the gt" generation

[Geometric distribution]

Population size 2N=6, sample size n = 2

- C

4



Coalescent derivation from the Wright-Fisher model

m We will make use of the Taylor series for m This allows us to rewrite our geometric
e* around x = 0: coalescent probability
e p— —_ a’/" _— _— o o o P — 1 T _
o1 31 Tl c(9) ( 2N> N
m We will only use the first 2 terms: m as (drop the -1 since g is large):

e ' ~1—r

Created using WolframAlpha
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Coalescent forn = 2

m We let 1 coalescent unit = 2N generations,
and let our new variable be t

m Welet T; be a random variable representing
the time when there are i lineages




Coalescent forn = 2

m We let 1 coalescent unit = 2N generations,
and let our new variable be t

m Welet T; be a random variable representing
the time when there are i lineages

m For n=2, this gives us an exponential
distribution with parameter 1




Coalescent forn = 2

m We let 1 coalescent unit = 2N generations,
and let our new variable be t

m Welet T; be a random variable representing
the time when there are i lineages

m For n=2, this gives us an exponential
distribution with parameter 1

m The expected time for 2 lineages to coalesce
is 1 coalescent unit of time => 2N generations




The Coalescent

m The larger our sample size n, the more pairs
we have that can coalesce right away

m In general, the time when there are i

lineages is also exponentially distributed
with parameter i(i-1)/2 (i “choose” 2)




The Coalescent

m The larger our sample size n, the more pairs
we have that can coalesce right away

m In general, the time when there are i

lineages is also exponentially distributed
with parameter i(i-1)/2 (i “choose” 2)

m Expected value (think: weighted average,
mean)

[T = /O Oote)e(;)tdt _ é




Handout 18, pg 2
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